6.cos350°cos40°-sin190°cos50°=( 。
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

分析 由條件利用誘導(dǎo)公式,兩角和差的余弦公式,化簡所給的式子可得結(jié)果.

解答 解:cos350°cos40°-sin190°cos50°=cos10°cos40°+sin10°sin40°=cos(10°-40°)
=cos30°=$\frac{\sqrt{3}}{2}$,
故選:C.

點(diǎn)評 本題主要考查誘導(dǎo)公式,兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.寫出下列命題p的非p形式(否定)
(1)p:100既能被4整除又能被5整除
(2)p:三條直線兩兩相交
(3)p:一元二次方程至多有兩個解
(4)p:2<x≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)3x-1,x,4x是等差數(shù)列{an}的前三項(xiàng),則a4=$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)${S_n}={n^2}+2n$時,a4+a5=( 。
A.11B.20C.33D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.為了調(diào)查學(xué)生每天零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費(fèi)觀.樣本容量1000的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[6,14)內(nèi)的頻數(shù)為680.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給出下列四個命題.
①命題p:對任意x∈R,sinx≤1的否定¬p:存在x∈R,sinx>1;
②“k=1”是“函數(shù)y=cos2kx-sin2kx的最小正周期為π”的充要條件;
③若$\overrightarrow{a}$與$\overrightarrow$+$\overrightarrow{c}$都是非零向量,則“$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$”是“$\overrightarrow{a}$∥($\overrightarrow$+$\overrightarrow{c}$)”的必要不充分條件;
④命題“若一個整數(shù)能被6整除,則它能被3整除”的否命題是假命題.其中真命題的序號是①.(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過F2(2,0)與x軸垂直的直線交橢圓于點(diǎn)M,且|MF2|=3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)P(0,1),問是否存在直線1與橢圓交于不同的兩點(diǎn)A,B,且AB的垂直平分線恰好過P點(diǎn)?若存在,求出直線l斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.用導(dǎo)數(shù)的定義求函數(shù)y=$\sqrt{x}$的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e,長軸兩個頂點(diǎn)分別為A,B.若C上有一點(diǎn)P,使得∠APB=120°,則離心率e的范圍為$[\frac{\sqrt{6}}{3},1)$.

查看答案和解析>>

同步練習(xí)冊答案