分析 (Ⅰ)代入計(jì)算即可得到所求值;
(Ⅱ)運(yùn)用構(gòu)造數(shù)列,兩邊減1,再取倒數(shù),結(jié)合等差數(shù)列的通項(xiàng)公式,即可得到所求;
(Ⅲ)構(gòu)造f(x)=ln(x+1)-x(x>0),求出導(dǎo)數(shù),運(yùn)用單調(diào)性可得ln(x+1)<x(x>0),有$ln(1+\frac{1}{n+1})<\frac{1}{n+1},1-\frac{1}{n+1}<1-ln(1+\frac{1}{n+1})$,即有$\frac{n}{n+1}$<1-(ln(n+2)-ln(n+1)),再由累加法和裂項(xiàng)相消求和,即可得證.
解答 解:(Ⅰ)由a1=$\frac{1}{2}$,an+1=$\frac{1}{{2-{a_n}}}$,
解得a2=$\frac{1}{2-\frac{1}{2}}$=$\frac{2}{3}$,a3=$\frac{1}{2-\frac{2}{3}}$=$\frac{3}{4}$;
(Ⅱ)由$a{\;}_{n+1}-1=\frac{1}{{2-a{\;}_n}}-1=\frac{{a{\;}_n-1}}{{2-a{\;}_n}}$,
所以$\frac{1}{{a{\;}_{n+1}-1}}=\frac{1}{{a{\;}_n-1}}-1$.
即有$\frac{1}{{a}_{n}-1}$=$\frac{1}{\frac{1}{2}-1}$-(n-1)=-1-n,
所以${a_n}=\frac{n}{n+1}$;
(Ⅲ)證明:令f(x)=ln(x+1)-x(x>0),
求導(dǎo)f′(x)=$\frac{1}{x+1}$-1=$\frac{-x}{x+1}$<0,f(x)在(0,+∞)遞減,
可得ln(x+1)<x(x>0),
有$ln(1+\frac{1}{n+1})<\frac{1}{n+1},1-\frac{1}{n+1}<1-ln(1+\frac{1}{n+1})$,
即有$\frac{n}{n+1}$<1-(ln(n+2)-ln(n+1)),
Sn=a1+a2+a3+…+an<n-(ln3-ln2)-(ln4-ln3)-…-(ln(n+2)-ln(n+1))
=n-ln(n+2)-ln2=n-ln$\frac{n+2}{2}$.
則原不等式成立.
點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式的運(yùn)用,考查不等式的證明,注意運(yùn)用構(gòu)造函數(shù)判斷單調(diào)性證明,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{32}{3}π$ | B. | $\frac{{8\sqrt{2}}}{3}π$ | C. | $\frac{4}{3}π$ | D. | $\frac{{\sqrt{2}}}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16$\sqrt{2}$ | B. | 16+16$\sqrt{2}$ | C. | 32$\sqrt{2}$ | D. | 16+32$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com