用數(shù)學歸納法證明等式cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2n
=
sinx
2nsin
x
2n
對一切自然數(shù)n都成立.
分析:要證明等式cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2n
=
sinx
2nsin
x
2n
對一切自然數(shù)n都成立,則我們要先證明n=1時成立,再假設(shè)n=k時成立,進而n=k+1時等式也成立.
解答:解:①當n=1時,cos
x
2
=
sinx
2 sin
x
2 

②假設(shè)當n=k時,等式成立,即cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2k
=
sinx
2ksin
x
2k

則當n=k+1時,
cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2k
•cos
x
2k+1

=
sinx
2ksin
x
2k
cos
x
2k+1

=
sinx
2k•2•sin
x
2k+1
cos
x
2k+1
cos
x
2k+1
=
sinx
2nsin
x
2k+1

即此時等式也成立,
故等式cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2n
=
sinx
2nsin
x
2n
對一切自然數(shù)n都成立.
點評:數(shù)學歸納法常常用來證明一個與自然數(shù)集N相關(guān)的性質(zhì),其步驟為:設(shè)P(n)是關(guān)于自然數(shù)n的命題,若1)(奠基) P(n)在n=1時成立;2)(歸納) 在P(k)(k為任意自然數(shù))成立的假設(shè)下可以推出P(k+1)成立,則P(n)對一切自然數(shù)n都成立.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明等式1+2+3+…+(n+3)=
(n+3)(n+4)
2
(n∈N*)
時,第一步驗證n=1時,左邊應取的項是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明等式1+2+3+…+(2n+1)=(n+1)(2n+1)時,當n=1左邊所得的項是1+2+3;從“k→k+1”需增添的項是
(2k+2)+(2k+3)
(2k+2)+(2k+3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•浦東新區(qū)一模)用數(shù)學歸納法證明等式:1+a+a2+…+an+1=
1-an+21-a
(a≠1,n∈N*),驗證n=1時,等式左邊=
1+a+a2
1+a+a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明等式  
1
n+1
+
1
n+2
+…+
1
3n+1
>1(n≥2)
的過程中,由n=k遞推到n=k+1時不等式左邊( 。

查看答案和解析>>

同步練習冊答案