2.若變量x,y滿足條件$\left\{\begin{array}{l}3x-y≤0\\ x-3y+5≥0\\ x≥0\end{array}\right.$則z=x+y的最大值為( 。
A.0B.$\frac{5}{3}$C.2D.$\frac{5}{2}$

分析 畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解即可.

解答 解:由約束條件$\left\{\begin{array}{l}3x-y≤0\\ x-3y+5≥0\\ x≥0\end{array}\right.$作出可行域如圖,

由$\left\{\begin{array}{l}{3x-y=0}\\{x-3y+5=0}\end{array}\right.$可知,A($\frac{5}{8}$,$\frac{15}{8}$).
化目標(biāo)函數(shù)z=x+y為y=-x+z,
由圖可知,當(dāng)直線y=-x+z過A時(shí),直線在y軸上的截距最大,z有最大值為$\frac{5}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.對(duì)于滿足0<b<3a的任意實(shí)數(shù)a,b,函數(shù)f(x)=ax2+bx+c總有兩個(gè)不同的零點(diǎn),則$\frac{a+b-c}{a}$的取值范圍是( 。
A.$({1,\frac{7}{4}}]$B.(1,2]C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直線l經(jīng)過直線3x+4y-2=0與直線x-y+4=0的交點(diǎn)P,且垂直于直線x-2y-1=0
(Ⅰ)求直線l的方程
(Ⅱ)直線l與曲線y2+2x=0交于A,B兩點(diǎn),求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.下列結(jié)論:
①一次試驗(yàn)中不同的基本事件不可能同時(shí)發(fā)生;
②設(shè)k<3,k≠0,則$\frac{x^2}{3-k}-\frac{y^2}{k}=1$與$\frac{x^2}{5}+\frac{y^2}{2}=1$必有相同的焦點(diǎn);
③點(diǎn)P(m,3)在圓(x-2)2+(y-1)2=2的外部;
④已知ab<0,bc<0,則直線ax+by-c=0通過第一、三、四象限.
其中正確的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在正方形ABCD中,P為DC邊上的動(dòng)點(diǎn),設(shè)向量$\overrightarrow{AC}=λ\overrightarrow{DB}+μ\overrightarrow{AP}$,則λ+μ的最大值為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知遞增數(shù)列{an}的前n項(xiàng)和為Sn,且滿足$2{S_n}=a_n^2+n$.
(I)求an;
(II)設(shè)${b_n}={a_{n+1}}•{2^n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=$\frac{1-{2}^{x}}{{2}^{x}+3}$的值域是(-1,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某機(jī)構(gòu)通過對(duì)某企業(yè)2016年的生產(chǎn)經(jīng)營(yíng)情況的調(diào)查,得到每月利潤(rùn)y(單位:萬元)與相應(yīng)月份數(shù)x的部分?jǐn)?shù)據(jù)如表:
 x 1 4 7 12
 y 229 244 241 196
(1)根據(jù)如表數(shù)據(jù),請(qǐng)從下列三個(gè)函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述y與x的變化關(guān)系,并說明理由,y=ax3+b,y=-x2+ax+b,y=a•bx
(2)利用(1)中選擇的函數(shù),估計(jì)月利潤(rùn)最大的是第幾個(gè)月,并求出該月的利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若變量x,y滿足$\left\{\begin{array}{l}x-4y+3≤0\\ 3x+5y-25≤0\\ x≥1\end{array}\right.$,實(shí)數(shù)$\frac{z}{2}$是2x和y的等差中項(xiàng),則z的最大值為( 。
A.3B.6C.12D.15

查看答案和解析>>

同步練習(xí)冊(cè)答案