設(shè)集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命題“?t∈R,A∩B≠∅”是真命題,則實數(shù)a的取值范圍是________.


分析:首先要將條件進(jìn)行轉(zhuǎn)化,即命題P:A∩B≠空集為假命題,再結(jié)合集合A、B的特征利用數(shù)形結(jié)合即可獲得必要的條件,解不等式組即可獲得問題的解答.
解答:解:∵A={(x,y)|(x-4)2+y2=1},表示平面坐標(biāo)系中以M(4,0)為圓心,半徑為1的圓,
B={(x,y)|(x-t)2+(y-at+2)2=1},表示以N(t,at-2)為圓心,半徑為1的圓,且其圓心N在直線ax-y-2=0上,如圖.
如果命題“?t∈R,A∩B≠∅”是真命題,即兩圓有公共點,則圓心M到直線ax-y-2=0的距離不大于2,
,解得0≤a≤
∴實數(shù)a的取值范圍是;
故答案為:
點評:本題考查的是集合運算和命題的真假判斷與應(yīng)用的綜合類問題.在解答的過程當(dāng)中充分體現(xiàn)了圓的知識、集合運算的知識以及命題的知識.同時問題轉(zhuǎn)化的思想也在此題中得到了很好的體現(xiàn).值得同學(xué)們體會和反思.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A=B={(x,y)|x∈R,y∈R},從A到B的映射f:(x,y)→(x+2y,2x-y),則在映射f下B中的元素(1,1)對應(yīng)的A中元素為(  )
A、(1,3)
B、(1,1)
C、(
3
5
,
1
5
)
D、(
1
2
1
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A=B={(x,y)|x∈R,y∈R},從A到B的映射f:(x,y)→(x+2y,2x-y),則在映射f下B中的元素(1,1)對應(yīng)的A中元素為
3
5
,
1
5
3
5
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A=B={(x,y)|x∈R,y∈R},從A到B的映射f:(x,y)→(x+y,x-y)在映射下,B中的元素為(4,2)對應(yīng)的A中元素為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年吉林省延邊州汪清六中高三(上)9月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)集合A=B={(x,y)|x∈R,y∈R},從A到B的映射f:(x,y)→(x+2y,2x-y),則在映射f下B中的元素(1,1)對應(yīng)的A中元素為( )
A.(1,3)
B.(1,1)
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年吉林省延邊州汪清六中高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)集合A=B={(x,y)|x∈R,y∈R},從A到B的映射f:(x,y)→(x+2y,2x-y),則在映射f下B中的元素(1,1)對應(yīng)的A中元素為( )
A.(1,3)
B.(1,1)
C.
D.

查看答案和解析>>

同步練習(xí)冊答案