【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若, 在區(qū)間恒成立,求a的取值范圍.

【答案】(1)時(shí), 是增區(qū)間, 時(shí),增區(qū)間是,減區(qū)間是 時(shí),增區(qū)間是,減區(qū)間是;(2).

【解析】試題(1)先求函數(shù)導(dǎo)數(shù),根據(jù)a的范圍討論導(dǎo)函數(shù)在定義區(qū)間上零點(diǎn),根據(jù)導(dǎo)函數(shù)零點(diǎn)情況確定導(dǎo)函數(shù)符號(hào)變化情況,最后根據(jù)導(dǎo)函數(shù)符號(hào)確定單調(diào)區(qū)間,(2)作差函數(shù),求導(dǎo),根據(jù)基本不等式確定導(dǎo)函數(shù)恒大于零,根據(jù)函數(shù)單調(diào)性確定最小值,根據(jù)最小值非負(fù)得a的取值范圍.

試題解析:(1) 的定義域?yàn)?/span>.

(1)若,則單調(diào)增加.

(ii)若,而,故,則當(dāng)時(shí), ;

當(dāng)時(shí), ;故單調(diào)減少,在單調(diào)增加.

(iii)若,即,同理可得單調(diào)減少,在單調(diào)遞增.

(2)由題意得恒成立.設(shè), 則 ,所以在區(qū)間上是增函數(shù),只需 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為是橢圓上的一個(gè)動(dòng)點(diǎn),且面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)直線斜率為,且與橢圓的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C過(guò)點(diǎn)M0-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有、、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎(jiǎng),在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四件參賽作品的獲獎(jiǎng)情況預(yù)測(cè)如下.

甲說(shuō):“、同時(shí)獲獎(jiǎng).”

乙說(shuō):“、不可能同時(shí)獲獎(jiǎng).”

丙說(shuō):“獲獎(jiǎng).”

丁說(shuō):“至少一件獲獎(jiǎng)”

如果以上四位同學(xué)中有且只有兩位同學(xué)的預(yù)測(cè)是正確的,則獲獎(jiǎng)的作品是( )

A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x,y|x-42+y2=1},B={xy|x-t2+y-at+22=1},如果命題tRAB是真命題,則實(shí)數(shù)a的取值范圍是( 。

A.B.

C.D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為’(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程;

(2)已知直線軸交于點(diǎn),且與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,短軸的兩個(gè)端點(diǎn)分別為,點(diǎn)在橢圓上,且滿足,當(dāng)變化時(shí),給出下列三個(gè)命題:

①點(diǎn)的軌跡關(guān)于軸對(duì)稱;②的最小值為2;

③存在使得橢圓上滿足條件的點(diǎn)僅有兩個(gè),

其中,所有正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C的離心率是,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓截得的弦長(zhǎng)為

求橢圓C的方程;

過(guò)點(diǎn)的動(dòng)直線l與橢圓C相交于A,B兩點(diǎn),在y軸上是否存在異于點(diǎn)P的定點(diǎn)Q,使得直線l變化時(shí),總有?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列、、,若不改變,僅改變、、中部分項(xiàng)的符號(hào)(可以都不改變),得到的新數(shù)列稱為數(shù)列的一個(gè)生成數(shù)列,如僅改變數(shù)列、、的第二、三項(xiàng)的符號(hào),可以得到一個(gè)生成數(shù)列:、、、.已知數(shù)列為數(shù)列的生成數(shù)列,為數(shù)列的前項(xiàng)和.

1)寫出的所有可能的值;

2)若生成數(shù)列的通項(xiàng)公式為,求

3)用數(shù)學(xué)歸納法證明:對(duì)于給定的,的所有可能值組成的集合為.

查看答案和解析>>

同步練習(xí)冊(cè)答案