【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,過橢圓C的右焦點(diǎn)且垂直于x軸的直線與橢圓交于A,B兩點(diǎn),且|AB|= .
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)(1,0)的直線l交橢圓C于E,F(xiàn)兩點(diǎn),若存在點(diǎn)G(﹣1,y0)使△EFG為等邊三角形,求直線l的方程.
【答案】解:(Ⅰ)由橢圓的離心率e= = ,①由橢圓的通徑丨AB丨= = ,② 由a2=b2+c2 , ③
解得:a=2 ,b= ,
∴橢圓的標(biāo)準(zhǔn)方程: ;
(Ⅱ)設(shè)直線l:x=ty+1,E(x1 , y1),F(xiàn)(x2 , y2),
易知:t=0時(shí),不滿足,故t≠0,
則 ,整理得:(t2+4)y2+2ty﹣7=0,
顯然△=4t2+28(t2+4)>0,
∴y1+y2=﹣ ,y1y2=﹣ ,
于是x1+x2=t(y1+y2)+2= ,
故EF的中點(diǎn)D( ,﹣ ),
由△EFG為等邊三角形,則丨GE丨=丨GF丨,
連接GD,則kGDkEF=﹣1,
即 =﹣1,整理得y0=t+ ,
則G(﹣1,t+ ),
由△EFG為等比三角形,則丨GD丨= 丨EF丨,丨GD丨2= 丨EF丨2 ,
∴( +1)2+(t+ )2= (1+t2)[(﹣ )2﹣4×(﹣ )],
整理得:( +1)2= ,
即( )2= ,解得:t2=10,則t=± ,
∴直線l的方程x=± y+1,即y=± (x﹣1).
直線l的方程y=± (x﹣1).
【解析】(Ⅰ)利用橢圓的離心率,橢圓的通徑公式,及a2=b2+c2及可求得a和b的值,求得橢圓方程;(Ⅱ)設(shè)直線l的方程,代入橢圓方程,根據(jù)韋達(dá)定理及中點(diǎn)坐標(biāo)公式求得D點(diǎn)坐標(biāo),根據(jù)等邊三角形的性質(zhì),求得G點(diǎn)坐標(biāo),由丨GD丨= 丨EF丨,即可取得t的值,即可求得直線l的方程.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解橢圓的標(biāo)準(zhǔn)方程(橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)一噸甲產(chǎn)品、一噸乙產(chǎn)品所需要的煤、電以及產(chǎn)值如表所示;又知道國家每天分配給該廠的煤和電力有限制,每天供煤至多56噸,供電至多45千瓦.問該廠如何安排生產(chǎn),才能使該廠日產(chǎn)值最大?最大的產(chǎn)值是多少?
用煤(噸) | 用電(千瓦) | 產(chǎn)值(萬元) | |
生產(chǎn)一噸 甲種產(chǎn)品 | 7 | 2 | 8 |
生產(chǎn)一噸 乙種產(chǎn)品 | 3 | 5 | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F為拋物線E:x2=4y的焦點(diǎn),直線l為準(zhǔn)線,C為拋物線上的一點(diǎn)(C在第一象限),以點(diǎn)C為圓心,|CF|為半徑的圓與y軸交于D,F(xiàn)兩點(diǎn),且△CDF為正三角形.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)P為l上任意一點(diǎn),過P作拋物線x2=4y的切線,切點(diǎn)為A,B,判斷直線AB與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).
若,函數(shù)在上的最小值為4,求a的值;
對于中的函數(shù)在區(qū)間A上的值域是,求區(qū)間長度最大的注:區(qū)間長度區(qū)間的右端點(diǎn)區(qū)間的左斷點(diǎn);
若中函數(shù)的定義域是解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中A,B,C所對的邊分別為a,b,c, (1﹣cos2B)=8sinBsinC,A+ =π.
(Ⅰ)求cosB的值;
(Ⅱ)若點(diǎn)D在線段BC上,且BD=6,c=5,求△ADC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng), 恒成立,求實(shí)數(shù)的取值范圍.
(2)設(shè)在上有兩個(gè)極值點(diǎn).
(A)求實(shí)數(shù)的取值范圍;
(B)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=3tan.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的定義域;
(3)說明此函數(shù)的圖象是由y=tan x的圖象經(jīng)過怎樣的變換得到的?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,其準(zhǔn)線與軸交于點(diǎn),過作斜率為的直線與拋物線交于兩點(diǎn),弦的中點(diǎn)為的垂直平分線與軸交于.
(1)求的取值范圍;
(2)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進(jìn)行測試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個(gè)人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com