【題目】全國(guó)糖酒商品交易會(huì)將在四川舉辦.展館附近一家川菜特色餐廳為了研究參會(huì)人數(shù)與本店所需原材料數(shù)量的關(guān)系,在交易會(huì)前查閱了最近5次交易會(huì)的參會(huì)人數(shù)(萬(wàn)人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):
舉辦次數(shù) | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
參會(huì)人數(shù)(萬(wàn)人) | 11 | 9 | 8 | 10 | 12 |
原材料(袋) | 28 | 23 | 20 | 25 | 29 |
(Ⅰ)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會(huì)大約有13萬(wàn)人參加,為了保證原材料能夠滿足需要,則該店應(yīng)至少再補(bǔ)充原材料多少袋?
(參考公式:,)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校有17名學(xué)生參加某大學(xué)組織的夏令營(yíng)活動(dòng),每人至少參加地學(xué)、考古、信息科學(xué)三科夏令營(yíng)活動(dòng)中的一科,已知其中參加地學(xué)夏令營(yíng)活動(dòng)的有11人,參加考古夏令營(yíng)活動(dòng)的有7人,參加信息科學(xué)夏令營(yíng)活動(dòng)的有9人,同時(shí)參加地學(xué)和考古夏令營(yíng)活動(dòng)的有4人,同時(shí)參加地學(xué)和信息科學(xué)夏令營(yíng)活動(dòng)的有5人,同時(shí)參加考古和信息科學(xué)夏令營(yíng)活動(dòng)的有3人,則三科夏令營(yíng)活動(dòng)都參加的人數(shù)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司試銷(xiāo)一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷(xiāo)時(shí)銷(xiāo)售單價(jià)不低于成本單價(jià),又不高于800元,經(jīng)試銷(xiāo)調(diào)查,發(fā)現(xiàn)銷(xiāo)售量(件)與銷(xiāo)售單價(jià)(元)可近似看成一次函數(shù)(如圖).
(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;
(2)設(shè)公司獲得的利潤(rùn)(利潤(rùn)=銷(xiāo)售總價(jià)-成本總價(jià))為元。試用銷(xiāo)售單價(jià)表示利潤(rùn),并求銷(xiāo)售單價(jià)定為多少時(shí),該公司可獲得最大利潤(rùn),最大利潤(rùn)是多少?此時(shí)的銷(xiāo)售量是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為:(為參數(shù),),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程.
(1)①當(dāng)時(shí),寫(xiě)出直線的普通方程;
②寫(xiě)出曲線的直角坐標(biāo)方程;
(2)若點(diǎn),設(shè)曲線與直線交于點(diǎn),求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)市場(chǎng)分析,某綠色蔬菜加工點(diǎn)月產(chǎn)量為10噸至25噸(包含10噸和25噸),月生產(chǎn)總成本(萬(wàn)元)可以看成月產(chǎn)量(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬(wàn)元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬(wàn)元.
(1)寫(xiě)出月總成本(萬(wàn)元)關(guān)于月產(chǎn)量(噸)的函數(shù)解析式;
(2)若,當(dāng)月產(chǎn)量為多少噸時(shí),每噸平均成本最低?最低平均成本是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市的街道是相互垂直或平行的,如果按照街道垂直和平行的方向建立平面直角坐標(biāo)系,對(duì)兩點(diǎn)和,用以下方式定義兩點(diǎn)間距離:.如圖,學(xué)校在點(diǎn)處,商店在點(diǎn),小明家在點(diǎn)處,某日放學(xué)后,小明沿道路從學(xué)校勻速步行到商店,已知小明的速度是每分鐘1個(gè)單位長(zhǎng)度,設(shè)步行分鐘時(shí),小明與家的距離為個(gè)單位長(zhǎng)度.
(1)求關(guān)于的解析式;
(2)做出中函數(shù)的圖象,并求小明離家的距離不大于7個(gè)單位長(zhǎng)度的總時(shí)長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)設(shè)關(guān)于的方程的兩個(gè)不等實(shí)根,求證:(其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)寫(xiě)出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)在上,點(diǎn)在上,且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐中,平面平面,平面平面,為上任意一點(diǎn),為菱形對(duì)角線的交點(diǎn)。
(1)證明:平面平面;
(2)若,當(dāng)四棱錐的體積被平面分成3:1兩部分時(shí),若二面角的大小為,求的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com