【題目】全國(guó)糖酒商品交易會(huì)將在四川舉辦.展館附近一家川菜特色餐廳為了研究參會(huì)人數(shù)與本店所需原材料數(shù)量的關(guān)系,在交易會(huì)前查閱了最近5次交易會(huì)的參會(huì)人數(shù)(萬(wàn)人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):

舉辦次數(shù)

第一次

第二次

第三次

第四次

第五次

參會(huì)人數(shù)(萬(wàn)人)

11

9

8

10

12

原材料(袋)

28

23

20

25

29

(Ⅰ)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程

(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會(huì)大約有13萬(wàn)人參加,為了保證原材料能夠滿足需要,則該店應(yīng)至少再補(bǔ)充原材料多少袋?

(參考公式:,

【答案】(Ⅰ);(Ⅱ)20袋.

【解析】

(Ⅰ)利用最小二乘法求關(guān)于的線性回歸方程;(Ⅱ)由,得,

即得該店應(yīng)至少再補(bǔ)充原材料31.9-1220袋.

(Ⅰ)由數(shù)據(jù),求得, ,

, ,

由公式,求得,,

關(guān)于的線性回歸方程為.

(Ⅱ)由,得

,

所以,該店應(yīng)至少再補(bǔ)充原材料20袋.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有17名學(xué)生參加某大學(xué)組織的夏令營(yíng)活動(dòng),每人至少參加地學(xué)、考古、信息科學(xué)三科夏令營(yíng)活動(dòng)中的一科,已知其中參加地學(xué)夏令營(yíng)活動(dòng)的有11人,參加考古夏令營(yíng)活動(dòng)的有7人,參加信息科學(xué)夏令營(yíng)活動(dòng)的有9人,同時(shí)參加地學(xué)和考古夏令營(yíng)活動(dòng)的有4人,同時(shí)參加地學(xué)和信息科學(xué)夏令營(yíng)活動(dòng)的有5人,同時(shí)參加考古和信息科學(xué)夏令營(yíng)活動(dòng)的有3人,則三科夏令營(yíng)活動(dòng)都參加的人數(shù)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司試銷(xiāo)一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷(xiāo)時(shí)銷(xiāo)售單價(jià)不低于成本單價(jià),又不高于800元,經(jīng)試銷(xiāo)調(diào)查,發(fā)現(xiàn)銷(xiāo)售量(件)與銷(xiāo)售單價(jià)(元)可近似看成一次函數(shù)(如圖).

1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;

2)設(shè)公司獲得的利潤(rùn)(利潤(rùn)=銷(xiāo)售總價(jià)-成本總價(jià))為元。試用銷(xiāo)售單價(jià)表示利潤(rùn),并求銷(xiāo)售單價(jià)定為多少時(shí),該公司可獲得最大利潤(rùn),最大利潤(rùn)是多少?此時(shí)的銷(xiāo)售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為:為參數(shù),),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程.

(1)①當(dāng)時(shí),寫(xiě)出直線的普通方程;

②寫(xiě)出曲線的直角坐標(biāo)方程;

(2)若點(diǎn),設(shè)曲線與直線交于點(diǎn),求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)市場(chǎng)分析,某綠色蔬菜加工點(diǎn)月產(chǎn)量為10噸至25噸(包含10噸和25噸),月生產(chǎn)總成本(萬(wàn)元)可以看成月產(chǎn)量(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬(wàn)元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬(wàn)元.

1)寫(xiě)出月總成本(萬(wàn)元)關(guān)于月產(chǎn)量(噸)的函數(shù)解析式;

2)若,當(dāng)月產(chǎn)量為多少噸時(shí),每噸平均成本最低?最低平均成本是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市的街道是相互垂直或平行的,如果按照街道垂直和平行的方向建立平面直角坐標(biāo)系,對(duì)兩點(diǎn),用以下方式定義兩點(diǎn)間距離:.如圖,學(xué)校在點(diǎn)處,商店在點(diǎn),小明家在點(diǎn)處,某日放學(xué)后,小明沿道路從學(xué)校勻速步行到商店,已知小明的速度是每分鐘1個(gè)單位長(zhǎng)度,設(shè)步行分鐘時(shí),小明與家的距離為個(gè)單位長(zhǎng)度.

1)求關(guān)于的解析式;

2)做出中函數(shù)的圖象,并求小明離家的距離不大于7個(gè)單位長(zhǎng)度的總時(shí)長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)設(shè)關(guān)于的方程的兩個(gè)不等實(shí)根,求證:(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)寫(xiě)出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)上,點(diǎn)上,且,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐中,平面平面平面平面,上任意一點(diǎn),為菱形對(duì)角線的交點(diǎn)。

(1)證明:平面平面

(2)若,當(dāng)四棱錐的體積被平面分成3:1兩部分時(shí),若二面角的大小為,求的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案