【題目】已知cosα= ,cos(αβ)= ,且0<β<α< ,
(1)求tan2α的值;
(2)求β.

【答案】
(1)解:由cosα= ,0<β<α< ,可得sinα= = ,tanα= =4

∴tan2α= = =


(2)解:由cosα= ,cos(αβ)= ,且0<β<α< ,可得sin(αβ)= = ,

∴cosβ=cos[α(αβ)]=cosαcos(αβ)+sinαsin(αβ)

= + =

∴β=


【解析】(1)由條件利用同角三角函數(shù)的基本關(guān)系,求得tanα的值,再利用二倍角的正切公式求得tan2α的值.(2)由條件求得sin(αβ)的值,利用兩角差的余弦公式求得cosβ=cos[α(αβ)]的值,從而求得β的值.
【考點(diǎn)精析】本題主要考查了同角三角函數(shù)基本關(guān)系的運(yùn)用和兩角和與差的正切公式的相關(guān)知識(shí)點(diǎn),需要掌握同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:;兩角和與差的正切公式:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且 =﹣
(Ⅰ)求角B的大小;
(Ⅱ)若b= ,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):

產(chǎn)量x(千件)

2

3

5

6

成本y(萬(wàn)元)

7

8

9

12

(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程 = x (其中 = , =
(Ⅱ)預(yù)計(jì)產(chǎn)量為8千件時(shí)的成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】算法如圖,若輸入m=210,n=117,則輸出的n為(
A.2
B.3
C.7
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,所有正確的序號(hào)有( )
①在同一坐標(biāo)系中,函數(shù)y=2x與函數(shù)y=log2x的圖象關(guān)于直線y=x對(duì)稱(chēng);
②函數(shù)f(x)=ax+1(a>0,且a≠1)的圖象經(jīng)過(guò)定點(diǎn)(0,2);
③函數(shù) 的最大值為1;
④任取x∈R,都有3x>2x
A.①②③④
B.②
C.①②
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且 ,B=C. (Ⅰ)求cosB的值;
(Ⅱ)設(shè)函數(shù)f(x)=sin(2x+B),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求與直線y x 垂直,并且與兩坐標(biāo)軸圍成的三角形面積為24的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則 (其中a+c≠0)的取值范圍為

查看答案和解析>>

同步練習(xí)冊(cè)答案