已知函數(shù)f(x)=.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對任意x>0,f(x)≤t恒成立,求t的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某投資公司投資甲、乙兩個項(xiàng)目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗(yàn)公式P=,Q=t,今該公司將5億元投資于這兩個項(xiàng)目,其中對甲項(xiàng)目投資x(億元),投資這兩個項(xiàng)目所獲得的總利潤為y(億元).求:
(1)y關(guān)于x的函數(shù)表達(dá)式.
(2)總利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)=x2+10x(萬元);當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x-1 450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)為偶函數(shù).
(1)求k的值;
(2)若方程f(x)=log4(a·2x-a)有且只有一個根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于定義域?yàn)?i>A的函數(shù)f(x),如果任意的x1x2A,當(dāng)x1x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴(yán)格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴(yán)格增函數(shù),并且滿足條件f(f(k))=3k.
(1)證明:f(3k)=3f(k);
(2)求f(3k-1)(k∈N*)的值;
(3)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=ax2bxb-1(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的零點(diǎn);
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)上的值域;
(2)證明對于每一個,在上存在唯一的,使得
(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若xlog34=1,求的值.

查看答案和解析>>

同步練習(xí)冊答案