【題目】函數(shù)y=lncos(2x+ )的一個單調(diào)遞減區(qū)間是( )
A.(﹣ ,﹣ )
B.(﹣ ,﹣ )
C.(﹣ , )
D.(﹣ , )
【答案】C
【解析】解:設t=cos(2x+ ),則lnt在定義域上為增函數(shù),
要求函數(shù)y=lncos(2x+ )的一個單調(diào)遞減區(qū)間,
即求函數(shù)函數(shù)t=cos(2x+ )的一個單調(diào)遞減區(qū)間,同時t=cos(2x+ )>0,
即2kπ≤2x+ <2kπ+ ,k∈Z,
即kπ﹣ ≤x<kπ+ ,k∈Z,
當k=0時,﹣ ≤x< ,即函數(shù)的一個單調(diào)遞減區(qū)間為(﹣ , ),
故選:C
【考點精析】通過靈活運用復合函數(shù)單調(diào)性的判斷方法,掌握復合函數(shù)f[g(x)]的單調(diào)性與構成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關,其規(guī)律:“同增異減”即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E: (a>b>0)的離心率為 ,其長軸長與短軸長的和等于6.
(1)求橢圓E的方程;
(2)如圖,設橢圓E的上、下頂點分別為A1、A2 , P是橢圓上異于A1、A2的任意一點,直線PA1、PA2分別交x軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T.證明:線段OT的長為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中是錯誤命題的個數(shù)有( )
(1)若命題p為假命題,命題為假命題,則命題“”為假命題;
(2)命題“若,則或”的否命題為“若,則或”;
(3)對立事件一定是互斥事件;
(4)為兩個事件,則P(A∪B)=P(A)+P(B);
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)= ,曲線y=f(x)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】a,b為正數(shù),給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 ﹣ =1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓C:及點,.
過B作直線l與圓C相交于M,N兩點,,求直線l的方程;
在圓C上是否存在點P,使得?若存在,求點P的個數(shù);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足an+2=an+1﹣an , 且a1=2,a2=3,Sn為數(shù)列{an}的前n項和,則S2016的值為( )
A.0
B.2
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實數(shù)a的最大值為( )
A.2
B.
C.4
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com