【題目】3月底,我國新冠肺炎疫情得到有效防控,但海外確診病例卻持續(xù)暴增,防疫物資供不應求,某醫(yī)療器械廠開足馬力,日夜生產(chǎn)防疫所需物品.已知該廠有兩條不同生產(chǎn)線生產(chǎn)同一種產(chǎn)品各10萬件,為保證質量,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取20件,進行品質鑒定,鑒定成績的莖葉圖如下所示:

該產(chǎn)品的質量評價標準規(guī)定:鑒定成績達到的產(chǎn)品,質量等級為優(yōu)秀;鑒定成績達到的產(chǎn)品,質量等級為良好;鑒定成績達到的產(chǎn)品,質量等級為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.

1)從等級為優(yōu)秀的樣本中隨機抽取兩件,記為來自機器生產(chǎn)的產(chǎn)品數(shù)量,寫出的分布列,并求的數(shù)學期望;

2)請完成下面質量等級與生產(chǎn)線產(chǎn)品列聯(lián)表,并判斷能不能在誤差不超過0.05的情況下,認為產(chǎn)品等級是否達到良好以上與生產(chǎn)產(chǎn)品的生產(chǎn)線有關.

生產(chǎn)線的產(chǎn)品

生產(chǎn)線的產(chǎn)品

合計

良好以上

合格

合計

附:

0.10

0.05

0.01

0.005

2.706

3.841

6.635

7.879

【答案】1)分布列見解析, 2)列聯(lián)表見解析;不能

【解析】

1)根據(jù)題意,求得隨機變量的可能取值為01,2,求得相應的概率,列出隨機變量的分布列,利用期望的公式,即可求解;

2)由已知可得,得出列聯(lián)表,利用公式求得的值,結合附表,即可求解.

1)從圖可知,樣本中優(yōu)秀的產(chǎn)品有2件來自生產(chǎn)線,3件來自生產(chǎn)線;

所以的可能取值為0,1,2.

,.

的分布列為:

0

1

2

0.1

0.6

0.3

.

2)由已知可得,列聯(lián)表為

生產(chǎn)線的產(chǎn)品

生產(chǎn)線的產(chǎn)品

合計

良好以上

6

12

18

合格

14

8

22

合計

20

20

40

,

所以不能在誤差不超過0.05的情況下,認為產(chǎn)品等級是否達到良好以上與生產(chǎn)產(chǎn)品的生產(chǎn)線有關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】XN(12),其正態(tài)分布密度曲線如圖所示,P(X≥3)=0.0228,那么向正方形OABC中隨機投擲10000個點,則落入陰影部分的點的個數(shù)的估計值為(  )

(附:隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μσξμσ)=68.26%,P(μ-2σξμ+2σ)=95.44%)

A. 6038 B. 6587 C. 7028 D. 7539

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《九章算術商功》中闡述:“斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗之以棊,其形露矣.”若稱為“陽馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長為1,對該幾何體有如下描述:

①四個側面都是直角三角形;

②最長的側棱長為;

③四個側面中有三個側面是全等的直角三角形;

④外接球的表面積為24π.

其中正確的描述為____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù),為直線的傾斜角).以原點為極點,軸的非負半軸為極軸建立極坐標系,并在兩個坐標系下取相同的長度單位.

1)當時,求直線的極坐標方程;

2)若曲線和直線交于,兩點,且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)處取得極值,求實數(shù)的值.

(Ⅱ)若函數(shù)不存在零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為準確把握市場規(guī)律,某公司對其所屬商品售價進行市場調查和模型分析,發(fā)現(xiàn)該商品一年內每件的售價按月近似呈的模型波動(為月份),已知3月份每件售價達到最高90元,直到7月份每件售價變?yōu)樽畹?/span>50.則根據(jù)模型可知在10月份每件售價約為_____.(結果保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱中,,分別為,的中點.

1)求證:平面

2)求平面與平面所成二面角銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】棉花的纖維長度是評價棉花質量的重要指標,某農科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取20根棉花纖維進行統(tǒng)計,結果如下表:(記纖維長度不低于300的為“長纖維”,其余為“短纖維”)

纖維長度

甲地(根數(shù))

3

4

4

5

4

乙地(根數(shù))

1

1

2

10

6

(1)由以上統(tǒng)計數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯誤概率不超過0.025的前提下認為“纖維長度與土壤環(huán)境有關系”.

甲地

乙地

總計

長纖維

短纖維

總計

附:(1)

(2)臨界值表;

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,CDAB,,,,,E的中點.

1)求證:;

2)求P到平面的距離.

查看答案和解析>>

同步練習冊答案