(2014·孝感模擬)已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函數(shù)f(x)的最小值.
(2)對于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
甲、乙兩個工廠,甲廠位于一直線河岸的岸邊處,乙廠與甲廠在河的同側(cè),乙廠位于離河岸40千米的處,乙廠到河岸的垂足與相距50千米,兩廠要在此岸邊之間合建一個供水站,從供水站到甲廠和乙廠的水管費用分別為每千米3元和5元,若千米,設(shè)總的水管費用為元,如圖所示,
(1)寫出關(guān)于的函數(shù)表達式;
(2)問供水站建在岸邊何處才能使水管費用最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)(是自然對數(shù)的底數(shù),),且.
(1)求實數(shù)的值,并求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),對任意,恒有成立.求實數(shù)的取值范圍;
(3)若正實數(shù)滿足,,試證明:;并進一步判斷:當正實數(shù)滿足,且是互不相等的實數(shù)時,不等式是否仍然成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
某加油站擬造如圖所示的鐵皮儲油罐(不計厚度,長度單位:米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,(為圓柱的高,為球的半徑,).假設(shè)該儲油罐的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為千元,半球形部分每平方米建造費用為3千元.設(shè)該儲油罐的建造費用為千元.
(1)寫出關(guān)于的函數(shù)表達式,并求該函數(shù)的定義域;
(2)求該儲油罐的建造費用最小時的的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某造紙廠擬建一座底面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/平方米,水池所有墻的厚度忽略不計.
(1)試設(shè)計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設(shè)計污水處理池的長和寬,使總造價最低,并求出最低總造價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,長方形物體E在雨中沿面P(面積為S)的垂直方向作勻速移動,速度為,雨速沿E移動方向的分速度為。E移動時單位時間內(nèi)的淋雨量包括兩部分:(1)P或P的平行面(只有一個面淋雨)的淋雨量,假設(shè)其值與×S成正比,比例系數(shù)為;(2)其它面的淋雨量之和,其值為,記為E移動過程中的總淋雨量,當移動距離d=100,面積S=時。
(1)寫出的表達式
(2)設(shè)0<v≤10,0<c≤5,試根據(jù)c的不同取值范圍,確定移動速度,使總淋雨量最少。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=lg(1-x)+lg(1+x)+x4-2x2.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com