【題目】設(shè)f(x)是偶函數(shù),且在(0,+∞)內(nèi)是減函數(shù),又f(﹣3)=0,則xf(x)>0的解集是(
A.{x|﹣3<x<0或x>3}
B.{x|x<﹣3或x>3}
C.{x|﹣3<x<0或x<x<3}
D.{x|x<﹣3或0<x<3}

【答案】D
【解析】解:根據(jù)f(x)是偶函數(shù),且在(0,+∞)內(nèi)是減函數(shù),
又f(﹣3)=0,
可得函數(shù)f(x)在(﹣∞,0)內(nèi)是增函數(shù),
且f(3)=f(﹣3)=0,畫出函數(shù)f(x)的單調(diào)性示意圖,
如圖所示:
由不等式 xf(x)>0,可得x與f(x)符號相同,
結(jié)合函數(shù)f(x)的圖象,可得 x<﹣3,或 0<x<3,
故選 D.

【考點精析】利用奇偶性與單調(diào)性的綜合對題目進行判斷即可得到答案,需要熟知奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中, .

(1)證明:數(shù)列為等差數(shù)列;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=
(1)求函數(shù)的定義域及值域;
(2)確定函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線, ,則下列說法正確的是( )

A. 上各點橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

B. 上各點橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

C. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

D. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x﹣ )+2sin(x﹣ )cos(x﹣ ).
(1)求函數(shù)f(x)的最小正周期和圖象的對稱軸方程.
(2)求函數(shù)f(x)在區(qū)間[﹣ , ]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,a2=2,an+2=(1+cos2 )an+sin2 ,則該數(shù)列的前12項和為(
A.211
B.212
C.126
D.147

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

設(shè)函數(shù)有兩個極值點,且

I)求的取值范圍,并討論的單調(diào)性;

II)證明: w.w.w..c.o.m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】化簡或求值:
(1)(2 0+22×(2 ﹣(
(2)2(lg 2+lg lg5+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】多面體, , , , 在平面上的射影是線段的中點.

(1)求證:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案