5.已知記號max{a,b}=$\left\{\begin{array}{l}{a;a≥b}\\{b;a<b}\end{array}\right.$,f(x)=max{tanπx,sinπx},則直線y=$\frac{1}{2}$與g(x)=|f(x)cosπx|的圖象在區(qū)間[0,n],n∈N*內(nèi)交點(diǎn)的橫坐標(biāo)之和記為Sn,則Sn=n2-$\frac{n}{12}$.

分析 由題意,g(x)=|f(x)cosπx|=$\left\{\begin{array}{l}{|sinπx|,x∈(0,\frac{1}{2})∪(1,\frac{3}{2})}\\{|\frac{1}{2}sin2πx|,x∈(\frac{1}{2},1)∪(\frac{3}{2},2)}\end{array}\right.$的圖象,如圖所示,周期為1,利用等差數(shù)列的求和公式,即可得出結(jié)論.

解答 解:由題意,g(x)=|f(x)cosπx|=$\left\{\begin{array}{l}{|sinπx|,x∈(0,\frac{1}{2})∪(1,\frac{3}{2})}\\{|\frac{1}{2}sin2πx|,x∈(\frac{1}{2},1)∪(\frac{3}{2},2)}\end{array}\right.$的圖象,如圖所示,周期為1,
[0,1],a1=$\frac{1}{6}$,b1=$\frac{3}{4}$,[1,2],a2=$\frac{7}{6}$,b2=$\frac{7}{4}$,…,
∴Sn=$\frac{1}{6}n+\frac{n(n+1)}{2}+\frac{3}{4}n+\frac{n(n+1)}{2}$=n2-$\frac{n}{12}$,
故答案為:n2-$\frac{n}{12}$.

點(diǎn)評 本題考查等差數(shù)列的求和公式,考查新定義,正確作出函數(shù)的圖象是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a>b,則下面結(jié)論正確的是( 。
A.$\frac{1}{a}<\frac{1}$B.$\frac{a}>1$C.|a|>bD.ac2>bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+ax+8的單調(diào)遞減區(qū)間為(-5,5),求函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知{an}是遞增的等差數(shù)列,a1=2,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2an+an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知兩圓x2+y2=9和(x+4)2+(y+3)2=8,則它們的相交弦長為$\frac{4\sqrt{14}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=$\frac{x+b}{(2x+1)(x-a)}$為奇函數(shù),則a+b=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.正三角形ABC的邊長為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為$\sqrt{3}$,則四面體ABCD外接球的表面積為( 。
A.B.C.D.$\frac{{7\sqrt{7}}}{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lg(x+$\frac{a}{x}$)(a∈R).
(1)求f(x)的定義域;
(2)若a<0,集合A={y|y=f(x),$\frac{1}{2}$≤x≤2},B=[-1,1],且A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.命題p:?x>0,x+$\frac{1}{x}$>a;命題q:?x0∈R,x02-2ax0+1≤0.
(1)若¬p為真命題,則求a的取值范圍;
(2)若p∧q為假命題,則求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案