定理:若函數(shù)f(x)在閉區(qū)間[m,n]上是連續(xù)的單調(diào)函數(shù),且f(m)f(n)<0,則存在唯一一個x∈(m,n)使f(x)=0.已知
(1)若是減函數(shù),求a的取值范圍.
(2)是否存在同時成立,若存在,指出c、d之間的等式關(guān)系,若不存在,請說明理由.
【答案】分析:(1)對函數(shù)g(x)求導(dǎo)可達(dá)g'(x)=cos(cosx)•(-sinx)-a,依題意由g(x)在[0,]單調(diào)遞減可得上恒成立即a≥-cos(cosx)sinx,可求a的取值范圍
(2)由(1)知:當(dāng)a=1時,上是減函數(shù)且,根據(jù)零點判定定理可得存在唯一,同理知存在即cosf(d)=d成立,從而可證
解答:解:(1)∵g(x)=sin(cosx)-ax∴g'(x)=cos(cosx)•(-sinx)-a
依題意恒成立
即a≥-cos(cosx)sinx
顯然-cos(cosx)sinx≤0∴a≥0,故a的取值范圍是a≥0…(6分)
(2)由(1)知:當(dāng)a=1時,上是減函數(shù)

∴存在唯一…(8分)
同理由上是減函數(shù)

知存在
即cosf(d)=d成立…(10分)
由cosf(d)=d得f[cos(f(d))]=f(d)
及f(cosc)=c的唯一性知c=f(d),即c=sind
綜上可知,存在c,d使f(cosc)=c和cos[f(d)]=d同時成立,且c=sind…(13分)
點評:解決本題的靈魂在于“轉(zhuǎn)化”,先將單調(diào)性問題轉(zhuǎn)化為恒成立問題,另外還要具備綜合應(yīng)用所學(xué)知識解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時,
b-a
b
<ln
b
a
b-a
a
(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項數(shù)列{an}的前n項和sn=
an2+an
2
,bn=(1+
1
2an
)an(n∈N*)

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)定理:若函數(shù)f(x)在區(qū)間D上是凹函數(shù),且f'(x)存在,則當(dāng)x1>x2(x1,x2∈D)時,總有
f(x1)-f(x2)
x1-x2
<f′(x1)
,請根據(jù)上述定理,且已知函數(shù)y=xn+1(n∈N*)是(0,+∞)上的凹函數(shù),判斷bn與bn+1的大;
(Ⅲ)求證:
3
2
bn<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•佛山二模)(1)定理:若函數(shù)f(x)的圖象在區(qū)間[a,b]上連續(xù),且在(a,b)內(nèi)可導(dǎo),則至少存在一點ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a)成立.應(yīng)用上述定理證明:
①1-
x
y
<lny-lnx<
y
x
-1(0<x<y)

n
k-2
1
k
<lnn<
n-1
k-1
1
k
(n>1)

(2)設(shè)f(x)=xn(n∈N*).若對任意的實數(shù)x,y,f(x)-f(y)=f′(
x+y
2
)(x-y)恒成立,求n所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定理:若函數(shù)f(x)的圖象在區(qū)間[a,b]上連續(xù),且在(a,b)內(nèi)可導(dǎo),則至少存在一點ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a)成立.應(yīng)用上述定理證明:
(1)1-
x
y
<lny-lnx<
y
x
-1(0<x<y)
;     
(2)設(shè)bn=
1
n
,Tn為數(shù)列{bn}的前n項和,求證:T2011-1<ln2011<T2010
(3)設(shè)f(x)=xn(n∈N*).若對任意的實數(shù)x,y,f(x)-f(y)=f′(
x+y
2
)(x-y)
恒成立,求n所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•湖北模擬)定理:若函數(shù)f(x)在閉區(qū)間[m,n]上是連續(xù)的單調(diào)函數(shù),且f(m)f(n)<0,則存在唯一一個x0∈(m,n)使f(x0)=0.已知f(x)=sinx(0≤x≤
π
2
)

(1)若g(x)=f(cosx)-ax(0≤x≤
π
2
)
是減函數(shù),求a的取值范圍.
(2)是否存在c,d∈(0,
π
2
)使f(cosc)=c和cos[f(d)]=d
同時成立,若存在,指出c、d之間的等式關(guān)系,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案