3.橢圓$\frac{x^2}{36}+\frac{y^2}{9}=1$上有動(dòng)P(m,n),則m+2n的取值范圍為[-6$\sqrt{2}$,6$\sqrt{2}$].

分析 求得橢圓的a,b,設(shè)出P(6cosα,3sinα)(0≤α<2π),則m+2n=6cosα+6sinα=6$\sqrt{2}$($\frac{\sqrt{2}}{2}$cosα+$\frac{\sqrt{2}}{2}$sinα),由兩角和的正弦公式以及正弦函數(shù)的值域,計(jì)算即可得到所求范圍.

解答 解:橢圓$\frac{x^2}{36}+\frac{y^2}{9}=1$的a=6,b=3,
P在橢圓上,可設(shè)P(6cosα,3sinα)(0≤α<2π),
則m+2n=6cosα+6sinα=6$\sqrt{2}$($\frac{\sqrt{2}}{2}$cosα+$\frac{\sqrt{2}}{2}$sinα)
=6$\sqrt{2}$sin(α+$\frac{π}{4}$),
由0≤α<2π,可得$\frac{π}{4}$≤α+$\frac{π}{4}$<$\frac{9π}{4}$,
即有sin(α+$\frac{π}{4}$)∈[-1,1],
則m+2n的范圍是[-6$\sqrt{2}$,6$\sqrt{2}$].
故答案為:[-6$\sqrt{2}$,6$\sqrt{2}$].

點(diǎn)評(píng) 本題考查橢圓的參數(shù)方程的運(yùn)用,考查正弦函數(shù)的值域的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.根據(jù)條件求拋物線的標(biāo)準(zhǔn)方程.
(1)拋物線的頂點(diǎn)在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且焦點(diǎn)在直線x+y+2=0上;
(2)拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)是圓x2十y2-4x=0的圓心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如果實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{\stackrel{3x+y-3≥0}{x-1≤0}}\\{y-3≤0}\end{array}\right.$,則z=3x+5y的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,已知△ABC頂點(diǎn)B(-2,0)和C(2,0),頂點(diǎn)A在橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上,則$\frac{sinB+sinC}{sinA}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)a>0,且a≠1,已知函數(shù)f(x)=loga$\frac{1-bx}{x-1}$是奇函數(shù)
(Ⅰ)求實(shí)數(shù)b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈(1,a-2)時(shí),函數(shù)f(x)的值域?yàn)椋?,+∞),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)為A、右焦點(diǎn)為F,B為橢圓E在第二象限上的點(diǎn),直線BO交橢圓E于點(diǎn)C,若直線BF平分線段AC,則橢圓E的離心率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=2x-5x則函數(shù)f(x)的零點(diǎn)所在區(qū)間可以為(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=x2-2x,g(x)=ax+2(a>0),若對(duì)任意x1∈R,都存在x2∈[-2,+∞),使得f(x1)>g(x2),則實(shí)數(shù)a的取值范圍是( 。
A.$({\frac{3}{2},+∞})$B.(0,+∞)C.$({0,\frac{3}{2}})$D.$({\frac{3}{2},3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知數(shù)列{an}的其前n項(xiàng)和Sn=n2-6n,則數(shù)列{|an|}前10項(xiàng)和為( 。
A.58B.56C.50D.45

查看答案和解析>>

同步練習(xí)冊(cè)答案