在△ABC中,∠A,∠B,∠C所對(duì)應(yīng)的邊a、b、c滿足5(a2+c2)=5b2+6ac,且cosA=-數(shù)學(xué)公式,
(I)求cosB和sinC的值.
(II)設(shè)a=5,求△ABC的面積.

解:(Ⅰ)由5(a2+c2)=5b2+6ac,得 5(a2+c2-b2)=6ac,即5×2accosB=6ac,解得
又由 cosA=-,得,
所以,sinC=
(Ⅱ)由,△ABC的面積是
分析:(Ⅰ)由5(a2+c2)=5b2+6ac,利用余弦定理可以求得cosB 的值,利用同角三角函數(shù)的基本關(guān)系求出sinB和sinA的值,
由sinC=sin(A+B),利用兩角和的正弦公式求出結(jié)果.
(Ⅱ)由正弦定理求得b的值,根據(jù)△ABC的面積等于,運(yùn)算求得結(jié)果.
點(diǎn)評(píng):本題考查正弦定理、余弦定理,同角三角函數(shù)的基本關(guān)系,求出cosB和sinB的值,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂一模)已知函數(shù)f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•煙臺(tái)二模)在△ABC中,a、b、c為角A、B、C所對(duì)的三邊.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,設(shè)內(nèi)角B為x,周長(zhǎng)為y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)在△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,三邊a、b、c成等差數(shù)列,且B=
π
4
,則(cosA一cosC)2的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中角A、B、C的對(duì)邊分別為a、b、c設(shè)向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
,
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b試確定x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,已知a=2,b=
7
,∠B=
π
3
,則△ABC的面積為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案