(本小題滿分12分)
如圖,在四棱錐中,底面是矩形,平面,.于點,中點.

(1)用空間向量證明:AM⊥MC,平面⊥平面;
(2)求直線與平面所成的角的正弦值;
(3)求點到平面的距離.

(1),平面,平面⊥平面
(2)(3)

解析試題分析:以為x軸,以為y軸,以為z軸建立空間直角坐標系,則,,, ,;
(1),平面,平面⊥平面
(2)設(shè)平面的一個法向量,由可得:,令,則。設(shè)所求角為,則
(3)由條件可得,.在中,,所以,則, ,所以所求距離等于點到平面距離的,設(shè)點到平面距離為,所以所求距離為
考點:向量法證明線面垂直求線面角求點面距
點評:采用空間向量的方法求解立體幾何題目首先要建立合適的坐標系寫出點的坐標,要求求解過程中對數(shù)據(jù)的計算要準確

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,

(1)線段的中點為,線段的中點為,求證:;
(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在正四棱錐V - ABCD中,P,Q分別為棱VB,VD的中點, 點M在邊BC上,且BM: BC = 1 : 3,AB =2,VA =" 6."

(I )求證CQ∥平面PAN;
(II)求證:CQ⊥AP.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
如圖,在直三棱柱ABC-A1B1C1中,的中點,中點.

(1)求證:∥面
(2)求直線EF與直線所成角的正切值;
(3)設(shè)二面角的平面角為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
如圖所示,在矩形中,的中點,F(xiàn)為BC的中點,O為AE的中點,以AE為折痕將△ADE向上折起,使D到P點位置,且

(1)求證:
(2)求二面角E-AP-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱中,,的中點.

(1)求證:平行平面;
(2)求二面角的余弦值;
(3)試問線段上是否存在點,使角?若存在,確定點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,已知在四棱錐中,底面是矩形,平面,,的中點, 是線段上的點.

(I)當的中點時,求證:平面;
(II)要使二面角的大小為,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在四棱錐S - ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中點.

(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點N是直線CD上的動點,MN與面SAB所成的角為,求sin的最大值,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面,的中點,作于點
(1) 證明//平面
(2) 證明⊥平面;
(3) 求二面角的大小。

查看答案和解析>>

同步練習冊答案