設(shè)函數(shù)f(x)的圖象關(guān)于原點對稱,且存在反函數(shù)f-1(x).若已知f(4)=2,則f-1(-2)=________.

-4
分析:由圖象關(guān)于原點對稱得此函數(shù)是奇函數(shù),結(jié)合題意和奇函數(shù)的定義得到f(-4)=-2,因原函數(shù)與反函數(shù)的定義域和值域恰相反,故得f-1(-2)=-2.
解答:∵函數(shù)f(x)的圖象關(guān)于原點對稱,∴此此函數(shù)在定義域上是奇函數(shù),
∵f(4)=2,∴f(-4)=-2,
由于存在反函數(shù)f-1(x),則f-1(-2)=-4.
故答案為:-4.
點評:本題考查了奇(偶)函數(shù)的對稱性以及反函數(shù)的性質(zhì)的應(yīng)用,即由圖象的對稱性判斷函數(shù)的奇偶性,利用原函數(shù)與反函數(shù)的定義域和值域恰相反,求出反函數(shù)的函數(shù)值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個根x1,x2滿足0<x1<x2
1
a

(1)當(dāng)x∈(0,x1)時,證明x<f (x)<x1;
(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明x0
x1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
ax2
+bx(a≠0)
(Ⅰ)若a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;
(Ⅲ)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于點P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
ax2+bx(a≠0)
(I)若a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(II)若a=2,b=1,若函數(shù)k=g(x)-2f(x)-x2在[1,3]上恰有兩個不同零點,求實數(shù)k的取值范圍;
(III)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于P,Q兩點,過線段PQ的中點R作x軸的垂線分別交C1、C2于M、N兩點,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2+bx

(1)當(dāng)a=b=
1
2
時,求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若b=2且h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(3)當(dāng)a≠0時,設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于點P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M,N,則是否存在點R,使C1在點M處的切線與C2在點N處的切線平行?如果存在,請求出R的橫坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
ax2+x+b
(a≥0),f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).
(Ⅰ)設(shè)函數(shù)f(x)的圖象與x軸交點為A,曲線y=f(x)在A點處的切線方程是y=3x-3,求a,b的值;
(Ⅱ)若函數(shù)g(x)=e-ax•f′(x),求函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案