若函數(shù)y=f(x)定義域?yàn)镸,a是常數(shù),A={(x,y)|x=a,y∈R},B={(x,y)|y=f(x),x∈M}則A∩B中元素個(gè)數(shù)( 。
分析:由題意,說明集合A是一條直線,集合B是函數(shù)y=f(x)圖象上的所有的點(diǎn)組成的,考慮A∩B中元素個(gè)數(shù),只需考慮兩個(gè)圖象的交點(diǎn)個(gè)數(shù)即可.
解答:解:A={(x,y)|x=a,y∈R},B={(x,y)|y=f(x),x∈M},說明集合A是一條直線x=a上的點(diǎn)的集合;
集合B是函數(shù)y=f(x)圖象上的所有的點(diǎn)組成的集合;
當(dāng)直線與函數(shù)的圖象沒有交點(diǎn)時(shí),A∩B中元素個(gè)數(shù)是:0;
當(dāng)圖象有一個(gè)交點(diǎn)時(shí),A∩B中元素個(gè)數(shù)是:1;所以A∩B中元素個(gè)數(shù)是:0或1.
故選C.
點(diǎn)評(píng):本題屬于以函數(shù)的定義為平臺(tái),求集合的交集的基礎(chǔ)題,也是高考常會(huì)考的題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某旅游點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費(fèi)用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費(fèi)后的所得).
(1)求函數(shù)y=f(x)的解析式及定義域;
(2)試問日凈收入最多時(shí)每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)y=f(x),有下列命題:
①若a∈[-2,2],則函數(shù)f(x)=
x2+ax+1
的定域?yàn)镽;
②若f(x)=log
1
2
(x2-3x+2)
,則f(x)的單調(diào)增區(qū)間為(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,則
lim
x→2
[(x-2)f(x)]=0
;
(文)若f(x)=
1
x2-x-2
,則值域是(-∞,0)∪(0,+∞)
④定義在R的函數(shù)f(x),且對任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個(gè)周期.
其中真命題的編號(hào)是
 
.(文理相同)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一種商品,進(jìn)貨價(jià)每件40元,若銷售價(jià)定為每件50元,則平均日銷售量為30件.據(jù)市場調(diào)查:如果該商品每提高或降低1元,銷售量相應(yīng)地減少或增加2件.當(dāng)商品銷售價(jià)定為每件(50+x)元時(shí),要求既要賺錢又要賣得出去,該商品每天利潤設(shè)為y元,規(guī)定x為整數(shù).
(1)寫出函數(shù)y=f(x)的解析式,指出其定義域;
(2)當(dāng)銷售價(jià)定為多少元時(shí),日利潤最大,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
4x+2
(x∈R)
,P1(x1,y1)、P2(x2,y2)是函數(shù)y=f(x)圖象上兩點(diǎn),且線段P1P2中點(diǎn)P的橫坐標(biāo)是
1
2

(1)求證點(diǎn)P的縱坐標(biāo)是定值; 
(2)若數(shù)列{an}的通項(xiàng)公式是an=f(
n
m
)
(m∈N*),n=1,2…m),求數(shù)列{an}的前m項(xiàng)和Sm; 
(3)在(2)的條件下,若m∈N*時(shí),不等式
am
Sm
am+1
Sm+1
恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司將進(jìn)一批單價(jià)為7元的商品,若按每個(gè)10元銷售,每天可賣出100個(gè);若每個(gè)商品的銷售價(jià)上漲1元,則每天的銷售量就減少10個(gè).
(1)設(shè)每個(gè)商品的銷售價(jià)上漲x元(x≥0,x∈N),每天的利潤為y元,試寫出函數(shù)y=f(x)的表達(dá)式,并指明函數(shù)的定義域;
(2)當(dāng)每個(gè)商品的銷售價(jià)定為多少時(shí),每天的利潤最大?并求出此最大值.

查看答案和解析>>

同步練習(xí)冊答案