【題目】如圖所示,已知是正三角形,若平面,平面平面,且.
(1)求證:平面;
(2)若平面,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)過點作于點,由面面垂直性質(zhì)知平面,可知,由線面平行判定可得到結(jié)論;
(2)根據(jù)垂直關(guān)系可以為坐標(biāo)原點建立空間直角坐標(biāo)系,根據(jù)二面角的向量求法可求得結(jié)果.
(1)過點作于點,
平面平面,平面平面,平面,
平面,
平面,,又平面,平面;
(2),,,,,
平面,,
,,是的中點,
,連結(jié),則,平面,
,,四邊形是矩形,.
以為原點,、、所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,
設(shè),則,,,,,,
,,
設(shè)平面的一個法向量為,
則,取,則,,,
取平面的一個法向量為,
,
二面角為鈍二面角,二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,,E為AD的中點,AC與BE相交于點O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】惰性氣體分子為單原子分子,在自由原子情形下,其電子電荷分布是球?qū)ΨQ的.負(fù)電荷中心與原子核重合,但如兩個原子接近,則彼此能因靜電作用產(chǎn)生極化(正負(fù)電荷中心不重合),從而導(dǎo)致有相互作用力,這稱為范德瓦爾斯相互作用.今有兩個相同的惰性氣體原子,它們的原子核固定,原子核正電荷的電荷量為,這兩個相距為的惰性氣體原子組成體系的能量中有靜電相互作用能,其中為靜電常量,,分別表示兩個原子負(fù)電中心相對各自原子核的位移,且和都遠(yuǎn)小于,當(dāng)遠(yuǎn)小于1時,,則的近似值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥開發(fā)公司實驗室有瓶溶液,其中瓶中有細(xì)菌,現(xiàn)需要把含有細(xì)菌的溶液檢驗出來,有如下兩種方案:
方案一:逐瓶檢驗,則需檢驗次;
方案二:混合檢驗,將瓶溶液分別取樣,混合在一起檢驗,若檢驗結(jié)果不含有細(xì)菌,則瓶溶液全部不含有細(xì)菌;若檢驗結(jié)果含有細(xì)菌,就要對這瓶溶液再逐瓶檢驗,此時檢驗次數(shù)總共為.
(1)假設(shè),采用方案一,求恰好檢驗3次就能確定哪兩瓶溶液含有細(xì)菌的概率;
(2)現(xiàn)對瓶溶液進(jìn)行檢驗,已知每瓶溶液含有細(xì)菌的概率均為.
若采用方案一.需檢驗的總次數(shù)為,若采用方案二.需檢驗的總次數(shù)為.
(i)若與的期望相等.試求關(guān)于的函數(shù)解析式;
(ii)若,且采用方案二總次數(shù)的期望小于采用方案一總次數(shù)的期望.求的最大值.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F1為橢圓的左焦點,在橢圓上,PF1⊥x軸.
(1)求橢圓的方程:
(2)已知直線l與橢圓交于A,B兩點,且坐標(biāo)原點O到直線l的距離為的大小是否為定值?若是,求出該定值:若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為2的等邊△ABC中,D,E分別為邊AC,AB的中點.將△ADE沿DE折起,使得AB⊥AD,得到如圖2的四棱錐A﹣BCDE,連結(jié)BD,CE,且BD與CE交于點H.
(1)證明:;
(2)設(shè)點B到平面AED的距離為h1,點E到平面ABD的距離為h2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學(xué)、外語,自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目是從物理、化學(xué)、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為、、、、、、、共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、、、.等級考試科目成績計入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.
舉例說明.
某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科等級的原始分分布區(qū)間為58~69,則該同學(xué)化學(xué)學(xué)科的原始成績屬等級.而等級的轉(zhuǎn)換分區(qū)間為61~70,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分為:
設(shè)該同學(xué)化學(xué)科的轉(zhuǎn)換等級分為,,求得.
四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績?yōu)?7.
(1)某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布.
(i)若小明同學(xué)在這次考試中物理原始分為84分,等級為,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績;
(ii)求物理原始分在區(qū)間的人數(shù);
(2)按高考改革方案,若從全省考生中隨機(jī)抽取4人,記表示這4人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學(xué)期望.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若實數(shù)滿足,則稱為函數(shù)的不動點.
(1)求函數(shù)的不動點;
(2)設(shè)函數(shù),其中為實數(shù).
① 若時,存在一個實數(shù),使得既是的不動點,又是 的不動點(是函數(shù)的導(dǎo)函數(shù)),求實數(shù)的取值范圍;
② 令,若存在實數(shù),使,,, 成各項都為正數(shù)的等比數(shù)列,求證:函數(shù)存在不動點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com