已知函數(shù)f(x)=sin x+ln x,則f′(1)的值為( 。
A、1-cos 1
B、1+cos 1
C、cos 1-1
D、-1-cos 1
考點:導數(shù)的運算
專題:導數(shù)的概念及應(yīng)用
分析:求函數(shù)的導數(shù),直接代入即可.
解答: 解:函數(shù)的導數(shù)為f′(x)=cosx+
1
x
,
則f′(1)=1+cos 1,
故選B.
點評:本題主要考查導數(shù)的計算,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,a2=2,且an=
an-1
an-2
(n≥3),則a2014=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①若函數(shù)f(x)=asinx+cosx的一個對稱中心是(
π
6
,0),則a的值為-
3
;
②函數(shù)f(x)=cos(2x+
π
2
)在區(qū)間[0,
π
2
]上單調(diào)遞減;
③已知函數(shù)f(x)=sin(2x+ϕ)(-π<ϕ<π),若-|f(
π
6
)|≤f(x)對任意x∈R恒成立,則ϕ=
π
6
或-
6
;
④函數(shù)f(x)=|sin(2x-
π
3
)+1|的最小正周期為π.
其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的不等式0≤x2-2x+m≤3(m∈R)有且只有一個實數(shù)解,函數(shù)f(x)=tx,g(x)=2tx2-2(m-t)x+1,若對于任一實數(shù)x,f(x)與g(x)至少有一個為正數(shù),則實數(shù)t的取值范圍是( 。
A、(-∞,0)
B、(0,2)
C、(2,8)
D、(0,8)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩人練習射擊,命中目標的概率分別為
1
2
1
3
,甲、乙兩人各射擊一次,目標被命中的概率為( 。
A、
2
3
B、
1
3
C、
1
6
D、
5
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}為等比數(shù)列,且an+2=an+1+2an,an>0,則該數(shù)列公比q=( 。
A、1
B、2
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為開區(qū)間(a,b),導函數(shù)f′(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開區(qū)間(a,b)內(nèi)有極小值(  )
A、2個B、1個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)f(x)=2sin(2x-θ)-3的圖象F,向左平移
π
6
個單位,向上平移3個單位得到圖象F′,若F′的一條對稱軸是直線x=
π
4
,則θ的一個可能取值是(  )
A、-
π
6
B、-
π
3
C、
π
2
D、
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y∈R,向量
a
=(x,1),
b
=(1,y),
c
=(2,-4)且
a
c
b
c
,則x+y=(  )
A、0B、-4C、2D、4

查看答案和解析>>

同步練習冊答案