已知四棱錐的三視圖和直觀圖如下圖所示,其中正視圖、側(cè)視圖是直角三角形,俯視圖是有一條對角線的正方形.是側(cè)棱上的動點.

(1)求證:;
(2)若的中點,求直線與平面所成角的正弦值.

(1)參考解析;(2);(3)

解析試題分析:(1)要證明,要轉(zhuǎn)到線面垂直,通過觀察需證明平面.所以要證明垂直于平面兩條相交直線,顯然,.從而可得結(jié)論.
(2)要求直線與平面所成角的正弦值,需要找到直線與平面所成的角.通過證明平面平面.即可得到點E到平面的投影在PO(O是AC與BD的交點)上.這樣就可以求出直線與平面所成的角,再通運算即可求出結(jié)論.本小題也可已建立空間坐標系來求.
(3)若四點在同一球面上,求該球的體積.依題意可得.只要把圖形補齊為一個長方體.外接球的直徑就是長方體的對角線長.即可求結(jié)論.
試題解析:(1)證明:由已知

,
又因為,
(2)解法一:連AC交BD于點O,連PO,由(1)知
,與平面所成的角.
,
法二:空間直角坐標法,略.
(3)解:以正方形為底面,為高補成長方體,此時對角線的長為球的直徑,
,
考點:1.線線垂直.2.線面所成的角.3.割補思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,菱形的邊長為2,為正三角形,現(xiàn)將沿向上折起,折起后的點記為,且,連接

(1)若的中點,證明:平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,底面是菱形,,,,,的中點,上的點滿足

(Ⅰ)求證:平面
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在長方體中,截下一個棱錐,求棱錐的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正三棱柱ABC-A'B'C'中,D是BC的中點,AA'=AB=2

(1)求證:ADB'D;
(2)求三棱錐A'-AB'D的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知半徑為的球內(nèi)有一個內(nèi)接正方體(即正方體的頂點都在球面上).
(1)求此球的體積;
(2)求此球的內(nèi)接正方體的體積;
(3)求此球的表面積與其內(nèi)接正方體的全面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD丄CD,AB//CD,AB=AD=CD=2,點M在線段EC上.

(I)當點M為EC中點時,求證: 面;
(II)求證:平面BDE丄平面BEC;
(III)若平面說BDM與平面ABF所成二面角銳角,且該二面角的余弦值為時,求三棱錐M-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個幾何體的三視圖如圖所示.已知正視圖是底邊長為1的平行四邊形,側(cè)視圖是一個長為,寬為1的矩形,俯視圖為兩個邊長為1的正方形拼成的矩形.

(1)求該幾何體的體積V;
(2)求該幾何體的表面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角梯形中,,,,,將沿折起,使平面平面,得到幾何體,如圖2所示.

(Ⅰ)求證:平面;
(Ⅱ)求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案