(本小題滿分12分)已知函數(shù)f(x)=,其中a , b , c是以d為公差的等差數(shù)列,且a>0,d>0.設(shè)[1-]上,,在,將點A, B, C,
(Ⅰ)求
(II)若⊿ABC有一邊平行于x軸,且面積為,求a ,d的值.
解:(1)解: ,
令,得
當時, ;當時, .
所以f(x)在x=-1處取得最小值即…………………………………6分
(2),
的圖象的開口向上,對稱軸方程為.
由知.
在上的最大值為.即.
又由,
當時, 取得最小值為.
,
.
由三角形ABC有一條邊平行于x軸知AC平行于x軸,所以
又由三角形ABC的面積為得.
利用b=a+d,c=a+2d,得
聯(lián)立(1)(2)可得.………………………………12分
解法2:
又c>0知在上的最大值為,即: .
又由
當時, 取得最小值為
,
…………………………………6分
由三角形ABC有一條邊平行于x軸知AC平行于x軸,所以
又由三角形ABC的面積為得
利用b=a+d,c=a+2d,得
聯(lián)立(1)(2)可得.………………………………12分
解析
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù),(1)若函數(shù)在處與直線相切;
(1) ①求實數(shù)的值; ②求函數(shù)上的最大值;
(2)當時,若不等式對所有的都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)給定函數(shù)
(1)試求函數(shù)的單調(diào)減區(qū)間;
(2)已知各項均為負的數(shù)列滿足,求證:;
(3)設(shè),為數(shù)列的前項和,求證:。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(理數(shù))(14分) 已知函數(shù),.
(Ⅰ)設(shè)函數(shù)F(x)=18f(x)- [h(x)],求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè),解關(guān)于x的方程;
(Ⅲ)設(shè),證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在上是增函數(shù),在上是減函數(shù),且方程有三個根,它們分別是.
(1)求的值; (2)求證: (3)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知x = 1是的一個極值點
(I)求b的值;
(II)求函數(shù)f(x)的單調(diào)減區(qū)間;
(III)設(shè),試問過點(2,5)可作多少條直線與曲線相切?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知f (x)=ax-ln(-x),x∈(-e,0),g(x)=-,其中e是自然常數(shù),a∈R.
(1)討論a=-1時, f (x)的單調(diào)性、極值;
(2)求證:在(1)的條件下,|f (x)|>g(x)+1/2;
(3)是否存在實數(shù)a,使f (x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)的圖象過點(1, -4),且函數(shù)的圖象關(guān)于y軸對稱.
(1) 求m、n的值及函數(shù)的極值;
(2) 求函數(shù)在區(qū)間上的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com