【題目】已知函數(shù) .
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間 上的最大值和最小值.
【答案】
(1)解:∵sinxcosx= sin2x,cos2x= (1+cos2x)
∴f(x)=﹣ sin(2x+ )+6sinxcosx﹣2cos2x+1=﹣sin2x﹣cos2x+3sin2x﹣(1+cos2x)+1
=2sin2x﹣2cos2x=2 sin(2x﹣ )
因此,f(x)的最小正周期T= =π;
(2)解:∵0≤x≤ ,∴﹣ ≤2x﹣ ≤
∴當x=0時,sin(2x﹣ )取得最小值﹣ ;當x= 時,sin(2x﹣ )取得最大值1
由此可得,f(x)在區(qū)間 上的最大值為f( )=2 ;最小值為f(0)=﹣2.
【解析】(1)利用兩角和的正弦公式將sin(2x+ )展開,結(jié)合二倍角的正余弦公式化簡合并,得f(x)=2sin2x﹣2cos2x,再利用輔助角公式化簡得f(x)=2 sin(2x﹣ ),最后利用正弦函數(shù)的周期公式即可算出f(x)的最小正周期;(2)根據(jù)x∈ ,得﹣ ≤2x﹣ ≤ .再由正弦函數(shù)在區(qū)間[﹣ , ]上的圖象與性質(zhì),可得f(x)在區(qū)間 上的最大值為與最小值.
【考點精析】利用兩角和與差的正弦公式和二倍角的正弦公式對題目進行判斷即可得到答案,需要熟知兩角和與差的正弦公式:;二倍角的正弦公式:.
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查觀眾對電視劇《風箏》的喜愛程度,某電視臺舉辦了一次現(xiàn)場調(diào)查活動.在參加此活動的甲、乙兩地大量觀眾中,各隨機抽取了8名觀眾對該電視劇評分做調(diào)查(滿分100分),被抽取的觀眾的評分結(jié)果如圖所示.
(1)從甲地抽取的8名觀眾和乙地抽取的8名觀眾中分別各選取一人,在已知兩人中至少一人評分不低于90分的條件下,求乙地被選取的觀眾評分低于90分的概率。
(2)從甲地抽取出來的8名觀眾中選取1人,從乙地抽取出來的8名觀眾中選取2人去參加代表大會,記選取的3人中評分不低于90分的人數(shù)為,求的分布列與期望。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下列三個命題:
①若一個球的半徑縮小到原來的 ,則其體積縮小到原來的 ;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標準差也相等;
③直線x+y+1=0與圓 相切.
其中真命題的序號是( )
A.①②③
B.①②
C.①③
D.②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x<0時,f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象如圖所示,
(1)畫出函數(shù)f(x),x∈R剩余部分的圖象,并根據(jù)圖象寫出函數(shù)f(x),x∈R的單調(diào)區(qū)間;(只寫答案)
(2)求函數(shù)f(x),x∈R的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知首項為 的等比數(shù)列{an}不是遞減數(shù)列,其前n項和為Sn(n∈N*),且S3+a3 , S5+a5 , S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè) ,求數(shù)列{Tn}的最大項的值與最小項的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應(yīng)學校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示,甲的成績中有一個數(shù)的個位數(shù)字模糊,在莖葉圖中用表示.(把頻率當作概率).
(1)假設(shè),現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學的角度,你認為派哪位學生參加比較合適?
(2)假設(shè)數(shù)字的取值是隨機的,求乙的平均分高于甲的平均分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把數(shù)列的各項按順序排列成如下的三角形狀,記表示第行的第個數(shù),例如,若,則=( )
A. 6 B. 7 C. 8 D. 15
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com