如圖,在正比例函數(shù)y=kx(k>0)圖象上有一列點(diǎn)P1,P2,P3,P4,…,Pn,….已知n≥2時(shí),
Pn-1Pn+1
=n
Pn
P
 
n+1
.設(shè)線段P1P2,P2P3,P3P4,…,PnPn+1的長(zhǎng)分別為a1,a2,a3,…,an,且a1=1.
(1)求出a2,a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)點(diǎn)Mn(n,an)(n≥2,n∈N),證明:這些點(diǎn)中不可能同時(shí)有兩個(gè)點(diǎn)在正比例函數(shù)y=kx(k>0)的圖象上.
分析:(1)由題設(shè)條件結(jié)合向量和的運(yùn)算,知
Pn-1Pn
 |=(n-1)| 
Pn
P
 
n+1
 |
,從而得出數(shù)列{an}的遞推關(guān)系式,即可得出a2,a3的值;
(2)將(1)中的a1=(2-1)a2,a2=(3-1)a3,a3=(4-1)a4.…,an=nan+1等關(guān)系式相乘即可得數(shù)列{an}的通項(xiàng)公式;
(3)對(duì)于結(jié)論是否定形式的命題,往往反證法證明.
解答:解:(1)由
Pn-1Pn+1
=n
Pn
P
 
n+1
Pn-1Pn
+
PnPn+1
=n
Pn
P
 
n+1
,
Pn-1Pn
=(n-1)
Pn
P
 
n+1
Pn-1Pn
 |=(n-1)| 
Pn
P
 
n+1
 |

即a1=(2-1)a2,a2=(3-1)a3,a3=(4-1)a4.…,an=nan+1
∴a2=1,a3=
1
2

(2)將(1)中的a1=(2-1)a2,a2=(3-1)a3,a3=(4-1)a4.…,
an=nan+1等關(guān)系式相乘得a1=1•2•3•4•…•n•an+1,
an+1=
1
1•2•3•…•n
an=
1
1•2•3•…•(n-1)

(3)設(shè)點(diǎn)Mm(m,am),Nn(n,an)(m≠n)在正比例函數(shù)y=kx(k>0),
則am=km,an=kn,即km=
1
1•2•3•…•(m-1)
kn=
1
1•2•3•…•(n-1)

k=
1
1•2•3•…•m
,k=
1
1•2•3•…•n
,從而1•2•3•…•m=1•2•3•…•n
這與m≠n矛盾,故不可能同時(shí)有兩個(gè)點(diǎn)在正比例函數(shù)y=kx(k>0)的圖象上.
點(diǎn)評(píng):本題考查數(shù)列現(xiàn)解析幾何的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地應(yīng)用反證法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)對(duì)于任意的實(shí)數(shù)a,b,記max{a,b}=
a(a≥b)
b(a<b)
.若F(x)=max{f(x),g(x)}(x∈R),其中函數(shù)  y=f(x)(x∈R)是奇函數(shù),且當(dāng)x≥0時(shí),f(x)=(x-1)2-2;函數(shù)y=g(x)(x∈R)是正比例函數(shù),其圖象與x≥0時(shí)函數(shù)y=f(x)的圖象如圖所示,則下列關(guān)于函數(shù)y=F(x)的說法中,正確的是( 。
A、y=F(x)為奇函數(shù)
B、y=F(x)在(-3,0)上為增函數(shù)
C、y=F(x)的最小值為-2,最大值為2
D、以上說法都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于任意的實(shí)數(shù)a、b,記max{a,b}=
a(a≥b)
b(a<b)
.若F(x)=max{f(x),g(x)}(x∈R),其中函數(shù)y=f(x)(x∈R)是奇函數(shù),且在x=1處取得極小值-2,函數(shù)y=g(x) (x∈R)是正比例函數(shù),其圖象與x≥0時(shí)的函數(shù)y=f(x)的圖象如圖所示,則下列關(guān)于函數(shù)y=F(x)的說法中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省雅安中學(xué)高一(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在正比例函數(shù)y=kx(k>0)圖象上有一列點(diǎn)P1,P2,P3,P4,…,Pn,….已知n≥2時(shí),.設(shè)線段P1P2,P2P3,P3P4,…,PnPn+1的長(zhǎng)分別為a1,a2,a3,…,an,且a1=1.
(1)求出a2,a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)點(diǎn)Mn(n,an)(n≥2,n∈N),證明:這些點(diǎn)中不可能同時(shí)有兩個(gè)點(diǎn)在正比例函數(shù)y=kx(k>0)的圖象上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省儀征市高三第一次涂卡訓(xùn)練數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知正比例函數(shù)y=2x的圖像l1與反比例函數(shù)y=的圖像相交于點(diǎn)A(a,2),將直線l1向上平移3個(gè)單位得到的直線l2與雙曲線相交于B、C兩點(diǎn)(點(diǎn)B在第一象限),與y軸交于點(diǎn)D

(1)求反比例函數(shù)的解析式;

(2)求△DOB的面積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案