20.由直線x=0,x=$\frac{2π}{3}$,y=0與曲線y=2sinx所圍成的圖形的面積等于3.

分析 由題意可得S=${∫}_{0}^{\frac{2π}{3}}(2sinx)dx$,計算可得.

解答 解:由題意和定積分的意義可得所求面積S=${∫}_{0}^{\frac{2π}{3}}(2sinx)dx$
=-2cosx${|}_{0}^{\frac{2π}{3}}$=-2(cos$\frac{2π}{3}$-cos0)=-2(-$\frac{1}{2}$-1)=3
故答案為:3

點評 本題考查定積分的求解,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸被圓x2+y2=b2與x軸的兩個交點三等分,則橢圓的離心率是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列命題中正確是(  )
A.y=sinx為奇函數(shù)B.y=|sinx|既不是奇函數(shù)也不是偶函數(shù)
C.y=3sinx+1為偶函數(shù)D.y=sinx-1為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.雙曲線${x^2}-\frac{y^2}{m}=1$的離心率大于$\sqrt{2}$,則( 。
A.$m>\frac{1}{2}$B.m≥1C.m>1D.m>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.對兩個變量y和x進行回歸分析,得到一組樣本數(shù)據(jù):(x1,y1),(x2,y2),…,(xn,yn),則不正確的說法是( 。
A.若求得的回歸方程為$\widehat{y}$=0.9x-0.3,則變量y和x之間具有正的線性相關關系
B.若這組樣本數(shù)據(jù)分別是(1,1),(2,1.5),(4,3),(5,4.5)則其回歸方程$\stackrel{∧}{y}$=bx+a必過點(3,2.5)
C.若用相關系數(shù)r來刻畫兩個變量之間的線性關系效果,回歸模型1的相關系數(shù)r=-0.32,回歸模型2的相關系數(shù)r=-0.94,則模型2的線性擬合效果更好
D.若用相關系數(shù)r來刻畫兩個變量之間的線性關系效果,回歸模型3的相關系數(shù)r=0.32,回歸模型4的相關系數(shù)r=0.94,則模型3的線性擬合效果更好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.數(shù)列{an}滿足a1=1,且對于任意的n∈N*都滿足an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,則數(shù)列{anan+1}的前n項和為 ( 。
A.$\frac{1}{3n+1}$B.$\frac{n}{3n+1}$C.$\frac{1}{3n-2}$D.$\frac{n}{3n-2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=xlnx,g(x)=(-x2+ax-3)ex(a∈R)
(1)當a=2時,求y=g(x)在x=1處的切線方程;
(2)求f(x)在[t,t+1](t>0)上的最小值;
(3)h(x)=g(x)-2exf(x),若h(x)在[$\frac{1}{e}$,e]有兩個不同的零點,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知f(2x-1)=x2+x,則f(5)的值為( 。
A.30B.12C.6D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知{an}是首項為2,公差為-2的等差數(shù)列,
(1)求通項an
(2)設{bn-an}是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項公式及其前n項和Sn

查看答案和解析>>

同步練習冊答案