如果函數(shù)f(x)對(duì)任意的實(shí)數(shù)x,存在常數(shù) M,使得不等式|f(x)|≤M|x|恒成立,那么就稱函數(shù)f(x)為有界泛函.給出下面三個(gè)函數(shù):①f(x)=1;②f(x)=x2;③數(shù)學(xué)公式.其中屬于有界泛函的是


  1. A.
  2. B.
  3. C.
  4. D.
    ①②③
C
分析:根據(jù)有界泛函的定義逐項(xiàng)判斷即可:①可取x=0說明f(x)不屬于有界泛函;②可說明x≠0時(shí),有無最大值;③可根據(jù)定義作出證明;
解答:①對(duì)于f(x)=1,當(dāng)x=0時(shí),有|f(x)|=1>M×0=0,故f(x)=1不屬于有界泛函;
②對(duì)于f(x)=x2,當(dāng)x≠0時(shí),有無最大值,f(x)=x2不屬于有界泛函;
③對(duì)于f(x)=,當(dāng)x≠0時(shí),有=,當(dāng)x=0時(shí),|f(x)|=
故f(x)=屬于有界泛函;
故選C.
點(diǎn)評(píng):本題考查函數(shù)恒成立問題、新定義,考查學(xué)生分析解決問題的能力,注意體會(huì)恒成立問題的否定方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記gn(x)=
f(x)
n
(n∈N*)
.若對(duì)定義域內(nèi)的每一個(gè)x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對(duì)定義域內(nèi)的每一個(gè)x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x
(x>0)既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對(duì)任給的“n階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“n階負(fù)函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通三模)設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記gn(x)=
f(x)
xn
(n∈N*)
.若對(duì)定義域內(nèi)的每一個(gè)x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對(duì)定義域內(nèi)的每一個(gè)x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x(x>0)
既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對(duì)任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負(fù)函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:022

已知函數(shù)y=f(x),設(shè)x0是定義域內(nèi)任一點(diǎn),如果對(duì)x0附近的所有點(diǎn)x,都有f(x)<f(x0),則稱函數(shù)f(x)在點(diǎn)x0處取_________,記作_________.并把x0稱為函數(shù)f(x)的一個(gè)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記數(shù)學(xué)公式.若對(duì)定義域內(nèi)的每一個(gè)x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對(duì)定義域內(nèi)的每一個(gè)x,總有數(shù)學(xué)公式,則稱f(x)為“n階不減函數(shù)”(數(shù)學(xué)公式為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若數(shù)學(xué)公式既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對(duì)任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負(fù)函數(shù)”?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案