6.已知tanx=2,則$\frac{sin2x+2cos2x}{{2{{cos}^2}x-3sin2x-1}}$的值為$\frac{2}{15}$.

分析 利用二倍角公式及同角的三角函數(shù)關(guān)系式的應(yīng)用即可化簡求值.

解答 解:∵tanx=2,
∴$\frac{sin2x+2cos2x}{{2{{cos}^2}x-3sin2x-1}}$=$\frac{sin2x+2cos2x}{cos2x-3sin2x}$=$\frac{2sinxcosx+2co{s}^{2}x-2si{n}^{2}x}{co{s}^{2}x-si{n}^{2}x-6sinxcosx}$=$\frac{2tanx+2-2ta{n}^{2}x}{1-ta{n}^{2}x-6tanx}$=$\frac{4+2-8}{1-4-12}$=$\frac{2}{15}$.
故答案為:$\frac{2}{15}$.

點評 本題主要考查了二倍角公式及同角的三角函數(shù)關(guān)系式的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=1-$\frac{2}{1{0}^{x}+1}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求f(x)的值域;
(3)用定義證明f(x)在(-∞,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.代數(shù)式sin120°cos240°的值為(  )
A.$-\frac{3}{4}$B.$-\frac{{\sqrt{3}}}{4}$C.$-\frac{3}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,矩形ABCD中,AB=3,AD=2,一質(zhì)點從AB邊上的點P0出發(fā),沿與AB的夾角為θ的方向射到邊BC上點P1后,依次反射(入射角與反射角相等)到邊CD,DA和AB上的P2,P3,P4處.
(1)若P4與P0重合,求tanθ的值;
(2)若P4落在A、P0兩點之間,且AP0=2,設(shè)tanθ=t.
(i)求tanθ的取值范圍;
(ii)將五邊形P0P1P2P3P4的面積S表示為t的函數(shù),并求S的最大值.
(參考結(jié)論:函數(shù)g(x)=x+$\frac{a}{x}$,(a>0),x>0,則函數(shù)g(x)在(0,$\sqrt{a}$]上是減函數(shù),在[$\sqrt{a}$,+∞)是增函數(shù).)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)△ABC的三個內(nèi)角分別為A,B,C.向量$\overrightarrow{m}$=(1,cos$\frac{C}{2}$)與$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{C}{2}$+cos$\frac{C}{2}$,$\frac{3}{2}$)共線.
(Ⅰ)求角A,B,C的大;
(Ⅱ)設(shè)角A,B,C的對邊分別是a,b,c,且滿足2acossC+c=2b,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.柳家為家里的小朋友萌萌訂了一份鮮奶,牛奶公司的員工可能在早上6:30一7:30之間將鮮奶送到他家,萌萌早上上學的時間在7:00一7:40之間,則萌萌在上學前能得到鮮奶的概率為$\frac{13}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.角α的終邊經(jīng)過點P(-1,$\sqrt{3}$),則sin($\frac{π}{2}$+α)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)=-x2+2bx+c,任意的x1,x2∈(-∞,0)且x1≠x2時,都有$\frac{{f({x_1})-f({x_2})}}{{{x_2}-{x_1}}}$<0,則實數(shù)b的取值范圍為b≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設(shè)a=3${\;}^{\frac{1}{2}}$,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,c=log2$\frac{1}{3}$,則a,b,c大小關(guān)系是a>b>c.

查看答案和解析>>

同步練習冊答案