由兩個1、兩個2、一個3、一個4這六個數(shù)字組成6位數(shù),要求相同數(shù)字不能相鄰,則這樣的6位數(shù)有


  1. A.
    12個
  2. B.
    48個
  3. C.
    84個
  4. D.
    96個
C
解:因為先排雷1,2,3,4然后將其與的元素插入進(jìn)去,則根據(jù)相同數(shù)字不能相鄰的原則得到滿足題意的6位數(shù)有84個。選C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩個學(xué)校高三年級分別有1100人,1000人,為了統(tǒng)計兩個學(xué)校在本地區(qū)一?荚嚨臄(shù)學(xué)科目的成績,采用分層抽樣抽取了105名學(xué)生的成績,并作了如下頻率分布表.(規(guī)定成績在[130,150]內(nèi)為優(yōu)秀)
甲校:
分組 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
頻數(shù) 2 3 10 15 15 x 3 1
乙校:
分組 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
頻數(shù) 1 2 9 8 10 10 y 3
(I)計算x,y的值,并分別估計兩個學(xué)校在此次一?荚囍袛(shù)學(xué)成績的優(yōu)秀率(精確到0.0001);
(II)由以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩個學(xué)校的數(shù)學(xué)成績有差異,并說明理由.
甲校 乙校 總計
優(yōu)秀
非優(yōu)秀
總計
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)


P(K2≥K0 0.10 0.05 0.025 0.010
k0 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州一模)甲乙兩個學(xué)校高三年級分別有1200人,1000人,為了了解兩個學(xué)校全體高三年級學(xué)生在該地區(qū)六校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩個學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計表如下:
甲校:
分組 [70,80) [80,90) [90,100) [100,110)
頻數(shù) 3 4 8 15
分組 [110,120) [120,130) [130,140) [140,150]
頻數(shù) 15 x 3 2
乙校:
分組 [70,80) [80,90) [90,100) [100,110)
頻數(shù) 1 2 8 9
分組 [110,120) [120,130) [130,140) [140,150]
頻數(shù) 10 10 y 3
(Ⅰ)計算x,y的值.
甲校 乙校 總計
優(yōu)秀
非優(yōu)秀
總計
(Ⅱ)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,請分別估計兩個學(xué)校數(shù)學(xué)成績的優(yōu)秀率.
(Ⅲ)由以上統(tǒng)計數(shù)據(jù)填寫右面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩個學(xué)校的數(shù)學(xué)成績有差異.
參考數(shù)據(jù)與公式:
由列聯(lián)表中數(shù)據(jù)計算K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

臨界值表
P(K≥k0 0.10 0.05 0.010
k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A和B是拋物線上的兩個動點,且在A和B處的拋物線切線相互垂直,已知由A、B及拋物線的頂點所成的三角形重心的軌跡也是一拋物線,記為L1.對L1重復(fù)以上過程,又得一拋物線L2,余類推.設(shè)如此得到拋物線的序列為L1,L2,…,Ln,若拋物線的方程為y2=6x,經(jīng)專家計算得,L1:y2=2(x-1),L2y2=
2
3
(x-1-
1
3
)=
2
3
(x-
4
3
)
,L3y2=
2
9
(x-1-
1
3
-
1
9
)=
2
9
(x-
13
9
)
,…,Lny2=
2
Sn
(x-
Tn
Sn
)
.   則2Tn-3Sn=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:教材完全解讀 高中數(shù)學(xué) 必修5(人教B版課標(biāo)版) 人教B版課標(biāo)版 題型:044

某住宿小區(qū)為了居民有一個優(yōu)雅、舒適的生活環(huán)境,計劃建一座八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個相同的矩形ABCD和EFGH構(gòu)成的面積為200平方米的十字形地域,計劃在正方形MNPQ上建一座花壇,造價為4200元/平方米,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為210元/平方米,再在四個空角上鋪草坪,造價為80元/平方米.

(1)設(shè)總造價為S元,AD長為x m,試建立S關(guān)于x的函數(shù)關(guān)系式.

(2)當(dāng)x為何值時,總造價S最小,并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某湖濱住宅小區(qū)為了營造一個優(yōu)雅、舒適的生活環(huán)境,計劃建造一個八邊形的休閑花園,它的主體造型的平面圖是由兩個相同的矩形ABCD和EFGH構(gòu)成的面積為200 m2的十字形地域,且計劃在正方形MNPK上建一座花壇,造價為4 200元/m2,在四個相同的矩形上(右圖陰影部分)鋪花崗巖路面,造價為210元/m2,再在四個三角形空地上鋪草坪,造價為80元/m2.

(1)設(shè)AD長為x m,試寫出總造價Q關(guān)于x的函數(shù)關(guān)系式;

(2)問當(dāng)x取何值時,總造價最小,并求出這個最小值.

查看答案和解析>>

同步練習(xí)冊答案