(Ⅰ)解關于x的不等式(lgx)2-lgx-2>0;
(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0對于|m|≤1恒成立,求x的取值范圍.
【答案】分析:(I)把lgx看作一個整體(未知數(shù)),此不等式是關于lgx的一元二次不等式,先解出lgx的取值范圍,進而利用對數(shù)函數(shù)的單調性即可得出x的取值范圍;
(II)設y=lgx,則原不等式可化為y2-(2+m)y+m-1>0,y2-2y-my+m-1>0.即(1-y)m+(y2-2y-1)>0.當y=1時,不等式不成立.設f(m)=(1-y)m+(y2-2y-1),則f(x)是m的一次函數(shù),利用一次函數(shù)的單調性即可解出.
解答:解:(Ⅰ)∵(lgx)2-lgx-2>0,
∴(lgx+1)(lgx-2)>0.
∴l(xiāng)gx<-1或lgx>2.

(Ⅱ)設y=lgx,則原不等式可化為y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.
∴(1-y)m+(y2-2y-1)>0.
當y=1時,不等式不成立.
設f(m)=(1-y)m+(y2-2y-1),則f(x)是m的一次函數(shù),且一次函數(shù)為單調函數(shù).
當-1≤m≤1時,若要

∴l(xiāng)gx<-1或lgx>3.
或x>103
∴x的取值范圍是
點評:熟練掌握換元法、等價轉化法、一元二次不等式的解法、一次函數(shù)的單調性是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設命題P:關于x的不等2x<a的解集為∅;命題q:函數(shù)y=lg(ax2-x+a)的定義域是R.若“p∨q”為真,“p∧q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

若不等式x25x+6<0的解集也滿足關于x的不等工2x29x+a<0,則實數(shù)a的取值范圍是(    )

(A) a≤9      (B) a>10      (C)     (D) 不存在

 

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:013

若不等式x25x+6<0的解集也滿足關于x的不等工2x29x+a<0,則實數(shù)a的取值范圍是(    )

(A) a≤9      (B) a>10      (C)     (D) 不存在

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設命題P:關于x的不等2x<a的解集為∅;命題q:函數(shù)y=lg(ax2-x+a)的定義域是R.若“p∨q”為真,“p∧q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省無錫一中高二(上)期中數(shù)學試卷(成志班)(解析版) 題型:解答題

設命題P:關于x的不等2x<a的解集為∅;命題q:函數(shù)y=lg(ax2-x+a)的定義域是R.若“p∨q”為真,“p∧q”為假,求a的取值范圍.

查看答案和解析>>

同步練習冊答案