(本小題滿分16分)
已知,為此函數(shù)的定義域)同時(shí)滿足下列兩個(gè)條件:①函數(shù)
內(nèi)單調(diào)遞增或單調(diào)遞減;②如果存在區(qū)間,使函數(shù)在區(qū)間上的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/47/7/4anz61.png" style="vertical-align:middle;" />,那么稱,為閉函數(shù)。請(qǐng)解答以下問題:
(1)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(2)求證:函數(shù))為閉函數(shù);
(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍.

(1)函數(shù)在定義域上不是單調(diào)遞增或單調(diào)遞減函數(shù),從而該函數(shù)不是閉函數(shù);
(2) 見解析;(3)

解析試題分析:(1)因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,不符合題意,不成立。
(2)利用高次函數(shù)來分析,利用單調(diào)性的定義分析和證明。
(3)易知上的增函數(shù),符合條件①;設(shè)函數(shù)符合條件②的區(qū)間
,利用對(duì)應(yīng)相等得到結(jié)論。
解:(1)函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增;---2分
所以,函數(shù)在定義域上不是單調(diào)遞增或單調(diào)遞減函數(shù),從而該函數(shù)不是閉函數(shù)---4分
(2) 先證符合條件①:對(duì)于任意
,有       
,      ,故上的減函數(shù).
又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/2e/7/okqdi1.png" style="vertical-align:middle;" />在上的值域是。                     ---------8分
(3)易知上的增函數(shù),符合條件①;設(shè)函數(shù)符合條件②的區(qū)間
,則;故的兩個(gè)不等根,即方程組為:
有兩個(gè)不等非負(fù)實(shí)根;         - -- --- ------11分
設(shè)為方程的二根,則 ,
解得:的取值范圍.            --- --- ---16分
考點(diǎn):本題主要是考查新定義的理解和運(yùn)用,確定是否為閉函數(shù)。
點(diǎn)評(píng):解決該試題的關(guān)鍵是理解概念,運(yùn)用函數(shù)的單調(diào)性和函數(shù)的某個(gè)區(qū)間,是否滿足定義域和值域相同得到結(jié)論。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分10分)
已知函數(shù)是定義在R上的偶函數(shù),當(dāng)時(shí),.

(1)畫出函數(shù)的圖象(在如圖的坐標(biāo)系中),并求出時(shí),的解析式;
(2)根據(jù)圖象寫出的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù).
(1)設(shè)的定義域?yàn)锳,求集合A;
(2)判斷函數(shù)在(1,+)上單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)定義在上的奇函數(shù),滿足 ,又當(dāng)時(shí),是減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)為奇函數(shù),為常數(shù),
(1)求實(shí)數(shù)的值;
(2)證明:函數(shù)在區(qū)間上單調(diào)遞增;
(3)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分8分)已知奇函數(shù)
(1)求實(shí)數(shù)m的值,并在給出的直角坐標(biāo)系中畫出的圖象;
(2)若函數(shù)在區(qū)間[-1,-2]上單調(diào)遞增,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

海事救援船對(duì)一艘失事船進(jìn)行定位:以失事船的當(dāng)前位置為原點(diǎn),以正北方向?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/ad/2/odzol.png" style="vertical-align:middle;" />軸正方向建立平面直角坐標(biāo)系(以1海里為單位長(zhǎng)度),則救援船恰好在失事船正南方向12海里處,如圖,現(xiàn)假設(shè):①失事船的移動(dòng)路徑可視為拋物線;②定位后救援船即刻沿直線勻速前往救援;③救援船出發(fā)小時(shí)后,失事船所在位置的橫坐標(biāo)為

(1)當(dāng)時(shí),寫出失事船所在位置的縱坐標(biāo),若此時(shí)兩船恰好會(huì)合,求救援船速度的大小和方向 (若確定方向時(shí)涉及到的角為非特殊角,用符號(hào)及其滿足的條件表示即可)
(2)問救援船的時(shí)速至少是多少海里才能追上失事船?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的定義域;
(2)討論的奇偶性;
(3)討論上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知函數(shù)其中a>0,且a≠1,
(1)求函數(shù)的定義域;
(2)當(dāng)0<a<1時(shí),解關(guān)于x的不等式
(3)當(dāng)a>1,且x∈[0,1)時(shí),總有恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案