【題目】如圖,直三棱柱 中, , , 是棱上的動(dòng)點(diǎn).
證明: ;
若平面分該棱柱為體積相等的兩個(gè)部分,試確定點(diǎn)的位置,并求二面角的大小.
【答案】(1)見(jiàn)解析(2)30°
【解析】試題分析:(1)由平面得,再由,得平面,
所以;(2)根據(jù)割補(bǔ)法求,根據(jù)體積為三棱柱一半,求得為中點(diǎn);)取的中點(diǎn),根據(jù)垂直關(guān)系可得是二面角的平面角.最后解三角形可得二面角的大小
試題解析:解:(I)平面,
又,即
平面,
又平面, ;
(II) ,
依題意,
為中點(diǎn);
(法1)取的中點(diǎn),過(guò)點(diǎn)作于點(diǎn),連接
,面面面
,得點(diǎn)與點(diǎn)重合,且是二面角的平面角.
設(shè),則,得二面角的大小為30°.
(法2)以為空間坐標(biāo)原點(diǎn), 為軸正向、為軸正向、為軸正向,建立空間直角坐標(biāo)系,設(shè)的長(zhǎng)為 1,則.
作中點(diǎn),連結(jié),則,從而平面,平面的一個(gè)法向量
設(shè)平面的一個(gè)法向量為,則
,令,得,
故二面角為30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分分)
已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線(xiàn)相切.
(Ⅰ)求圓的方程.
(Ⅱ)設(shè)直線(xiàn)與圓相交于, 兩點(diǎn),求實(shí)數(shù)的取值范圍.
(Ⅲ)在(Ⅱ)的條件下,是否存在實(shí)數(shù),使得點(diǎn)到, 兩點(diǎn)的距離相等,若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(I)求直方圖中的a值;
(II)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】父親節(jié)小明給爸爸從網(wǎng)上購(gòu)買(mǎi)了一雙運(yùn)動(dòng)鞋,就在父親節(jié)的當(dāng)天,快遞公司給小明打電話(huà)話(huà)說(shuō)鞋子已經(jīng)到達(dá)快遞公司了,馬上可以送到小明家,到達(dá)時(shí)間為晚上6點(diǎn)到7點(diǎn)之間,小明的爸爸晚上5點(diǎn)下班之后需要坐公共汽車(chē)回家,到家的時(shí)間在晚上5點(diǎn)半到6點(diǎn)半之間。求小明的爸爸到家之后就能收到鞋子的概率(快遞員把鞋子送到小明家的時(shí)候,會(huì)把鞋子放在小明家門(mén)口的“豐巢”中)為 __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣2sinx.
(Ⅰ)求函數(shù)f(x)在 上的最值;
(Ⅱ)若存在 ,使得不等式f(x)<ax成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,,,F分別在線(xiàn)段BC和AD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF.
Ⅰ求證:平面MFD;
Ⅱ若,求證:;
Ⅲ求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn), ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com