設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知a=3,b=4,
(1)求△ABC的面積;
(2)求sin(B-C)的值.
【答案】分析:(1)在△ABC中,依題意可求得sinC,從而可得△ABC的面積;
(2)由余弦定理c2=a2+b2-2abcosC=9+16-16=9可求得c,再由正弦定理=可求得sinB,繼而可求得cosB,最后利用兩角差的正弦即可求得sin(B-C).
解答:解:(1)在△ABC中,
∵cosC=,
∴sinC===.            …(2分)
∴S△ABC=absinC=2.      …(5分)
(2)由余弦定理可得,c2=a2+b2-2abcosC=9+16-16=9
∴c=3.                          …(7分)
又由正弦定理得,=,
∴sinB===.              …(9分)
cosB==…(10分)
∴sin(B-C)=sinBcosC-cosBsinC=×-×=.   …(12分)
點評:本題考查余弦定理與正弦定理,考查同角三角函數(shù)間的基本關(guān)系,考查兩角差的正弦,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)與
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.若b=
3
,c=1,B=60°
,則角C=
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c
(1)求證:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,試求
tanA
tanB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函數(shù)f(x)的最大值和最小值,并寫出相應(yīng)的x的值;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,滿足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周長;
(2)若直線l:
x
a
+
y
b
=1
恒過點D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步練習(xí)冊答案