【題目】已知橢圓與拋物線共焦點,拋物線上的點M到y軸的距離等于,且橢圓與拋物線的交點Q滿足.
(I)求拋物線的方程和橢圓的方程;
(II)過拋物線上的點作拋物線的切線交橢圓于、 兩點,設線段AB的中點為,求的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)將拋物線上的點到軸的距離等于和拋物線的定義相結合,可得,可得拋物線的方程,已知在橢圓中的值,由可得點Q的坐標,結合橢圓的定義可得橢圓的方程;(2)聯立直線與拋物線的方程,結合其有一個交點可得關系式,聯立直線與橢圓的方程根據橢圓與直線有2個交點即,得到關于不等式,解不等式可得的取值范圍,由中點坐標公式及韋達定理可得,從而可得其范圍.
試題解析:(1)∵拋物線上的點到軸的距離等于,
∴點M到直線的距離等于點到焦點的距離,
得是拋物線的準線,即,
解得,∴拋物線的方程為;
可知橢圓的右焦點,左焦點,
由得,又,解得,
由橢圓的定義得,
∴,又,得,
∴橢圓的方程為.
(2)顯然, ,
由,消去,得,
由題意知,得,
由,消去,得,
其中,
化簡得,
又,得,解得,
設,則<0,
由,得,∴的取值范圍是.
科目:高中數學 來源: 題型:
【題目】濰坊文化藝術中心的觀光塔是濰坊市的標志性建筑,某班同學準備測量觀光塔的高度(單位:米),如圖所示,垂直放置的標桿的高度米,已知, .
(1)該班同學測得一組數據: ,請據此算出的值;
(2)該班同學分析若干測得的數據后,發(fā)現適當調整標桿到觀光塔的距離(單位:米),使與的差較大,可以提高測量精確度,若觀光塔高度為136米,問為多大時, 的值最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log4(4x+1)+kx(k∈R)是偶函數.
(1)求實數k的值;
(2)設g(x)=log4(a2x+a),若f(x)=g(x)有且只有一個實數解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60,G為BC的中點.
(1)求證:FG平面BED;
(2)求證:平面BED⊥平面AED;
(3)求直線EF與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數, 在和處取得極值,且,曲線在處的切線與直線垂直.
(Ⅰ)求的解析式;
(Ⅱ)證明關于的方程至多只有兩個實數根(其中是的導函數, 是自然對數的底數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4x﹣2x+1+3,當x∈[﹣2,1]時,f(x)的最大值為m,最小值為n,
(1)若角α的終邊經過點P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自變量x的取值集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數fk(x)=xk+bx+c(k∈N* , b,c∈R),g(x)=logax(a>0,a≠1).
(1)若b+c=1,且fk(1)=g( ),求a的值;
(2)若k=2,記函數fk(x)在[﹣1,1]上的最大值為M,最小值為m,求M﹣m≤4時的b的取值范圍;
(3)判斷是否存在大于1的實數a,使得對任意x1∈[a,2a],都有x2∈[a,a2]滿足等式:g(x1)+g(x2)=p,且滿足該等式的常數p的取值唯一?若存在,求出所有符合條件的a的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com