設(shè)f(x)=
2-
x+3
x+1
的定義域?yàn)锳,g(x)=lg[(x-a-1)(2a-x)](a<1)的定義域?yàn)锽.
(Ⅰ)求A、B;
(Ⅱ)若p:x∈A,q:x∈B,¬p是¬q充分不必要條件,求實(shí)數(shù)a的取值范圍.
考點(diǎn):復(fù)合命題的真假,函數(shù)的定義域及其求法
專題:簡(jiǎn)易邏輯
分析:(Ⅰ)要使f(x)有意義,則需由 2-
x+3
x+1
≥0,按分式不等式的解法求解,要使g(x)有意義,則由真數(shù)大于零求解即可.
(Ⅱ)由¬p是¬q充分不必要條件,p是q必要不充分條件,繼而求出a 的范圍
解答: 解:(Ⅰ)由 2-
x+3
x+1
≥0,解得x<-1或x≥1,即A=(-∞,-1)∪[1,+∞)
由(x-a-1)(2a-x)>0得:(x-a-1)(x-2a)<0,由a<1得a+1>2a,∴2a<x<a+1,∴B=(2a,a+1).
(Ⅱ)∵p:x∈A,q:x∈B,¬p是¬q充分不必要條件,
∴p是q必要不充分條件,
2a≥1
a<1
a+1≤-1
a<1

解得
1
2
≤a<1,或a≤-2,
故實(shí)數(shù)a的取值范圍為(-∞,-2]∪[
1
2
,1)
點(diǎn)評(píng):本題通過(guò)求函數(shù)定義域來(lái)考查分式不等式,一元二次不等式的解法和集合的運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞減命題q:存在x∈R,使等式x2+ax+1=0成立,如果命題p或q為真命題,p且q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)的圖象與x軸有兩個(gè)交點(diǎn),它們之間的距離為4,且滿足f(3+x)=f(3-x),該函數(shù)的最小值是-3,則
(1)求該函數(shù)的解析式;
(2)寫(xiě)出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖空間幾何體ABCDEF中,四邊形ADEF為平行四邊形,F(xiàn)B⊥平面ABCD,AB∥CD,AB⊥BC,AB=BC=
1
2
CD.
(1)求證:直線CE∥平面ABF;
(2)求證:平面CDE⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐S-ABCD中,側(cè)面SAD是正三角形,底面ABCD是正方形,且平面SAD⊥平面ABCD,M、N、O分別是AB、SC、AD的中點(diǎn).
(Ⅰ)求證:MN∥平面SAD;
(Ⅱ)求證:平面SOB⊥平面SCM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
ax2-x-lnx(a為常數(shù)).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在正實(shí)數(shù)a,使得函數(shù)f(x)f(x)的極小值小于0,若存在,求出a的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-2)2+y2=1和兩點(diǎn)A(0,a)與B(0,-a)(a>0),若圓C上存在一點(diǎn)P使得PA⊥PB,則a的取值范圍是( 。
A、(0,3]
B、(0,1]
C、[1,3]
D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖的形狀和尺寸如圖所示,則其體積是( 。
A、
64
3
B、
44
3
C、
32
3
D、
32+8
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知底面是正三角形,且三條側(cè)陵相等的三棱柱P-ABC,點(diǎn)P,A,B,C都在同一個(gè)球面上,若PA,PB,PC兩兩互相垂直,且球心到截面ABC的距離為
3
3
,則該球的表面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案