4.設集合$A=\left\{{x\left|{{x^2}≤1}\right.}\right\},B=\left\{{x\left|{\frac{1}{x}≥0}\right.}\right\}$,則A∩B=( 。
A.(-∞,1]B.[0,1]C.(0,1]D.(-∞,0)∪(0,1]

分析 化簡集合A、B,再求A∩B.

解答 解:∵集合A={x|x2≤1}={x|-1≤x≤1}=[-1,1],
B={x|$\frac{1}{x}$≥0}={x|x>0}=(0,+∞);
∴A∩B=(0,1].
故選:C.

點評 本題考查了集合的化簡與簡單運算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.求下列函數(shù)的周期:
(1)f(x)=cos2x,x∈R;
(2)f(x)=sin4x+cos4x,x∈R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)=sin(ωx+φ)(ω>0).若f(x)的圖象向左平移$\frac{π}{3}$個單位所得的圖象與f(x)的圖象重合,則ω的最小值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列函數(shù)中,既是定義域上的奇函數(shù)又在區(qū)間(0,1)內(nèi)單調(diào)遞增的是( 。
A.$y=x+\frac{1}{x}$B.y=xsinx+cosxC.$y={e^x}-\frac{1}{e^x}$D.$y=ln\frac{1-x}{1+x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上點P到右焦點的距離的(  )
A.最大值為5,最小值為4B.最大值為10,最小值為8
C.最大值為10,最大值為6D.最大值為9,最小值為1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.數(shù)列{an}滿足an+1=3an+1,且a1=1,則數(shù)列{an}的通項公式an=$\frac{1}{2}$•(3n-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=x+$\frac{m}{x}$,且此函數(shù)圖象過點(1,2).
(Ⅰ)求實數(shù)m的值;
(Ⅱ)判斷函數(shù)f(x)的奇偶性并證明;
(Ⅲ)討論函數(shù)f(x)在(0,1)上的單調(diào)性,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的一點P到右準線的距離為4,則點P到右焦點的距離為$\frac{16}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.將函數(shù)y=$\sqrt{3}$cosx+sinx(x∈R)的圖象向左平移m(m>0)的長度單位后.所得到的圖象關于原點對稱,則m的最小值是$\frac{2π}{3}$.

查看答案和解析>>

同步練習冊答案