【題目】為調(diào)查了解某高等院校畢業(yè)生參加工作后,從事對工作與大學(xué)所學(xué)專業(yè)是否專業(yè)對口,該校隨機(jī)調(diào)查了80位該校2015年畢業(yè)的大學(xué)生,得到具體數(shù)據(jù)如下表:

(1)能否在犯錯誤的概率不超過的前提下,認(rèn)為“畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對口與性別有關(guān)?”

參考公式:

附表:

(2)求這80位畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對口的概率,并估計該校近3年畢業(yè)的2000名大學(xué)生總從事的工作與大學(xué)所學(xué)專業(yè)對口的人數(shù);

(3)若從工作與所學(xué)專業(yè)不對口的15人中選出男生甲、乙,女生對丙、丁,讓他們兩兩進(jìn)行一次10分鐘的職業(yè)交流,該校宣傳部對每次交流都一一進(jìn)行視頻記錄,然后隨機(jī)選取一次交流視頻上傳到學(xué)校的網(wǎng)站,試求選取的視頻恰為異性交流視頻的概率.

【答案】1)不能;(2;(3.

【解析】

(1)根據(jù)列聯(lián)表中的數(shù)據(jù),得到的觀測值為

,

故不能在犯錯誤的概率不超過的前提下,認(rèn)為“畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對口與性別有關(guān)”. 5分

(2)這80為畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)的概率為, 6分

由此估計該校近年畢業(yè)的大學(xué)生中從事的工作與大學(xué)所學(xué)專業(yè)對口的人數(shù)為

, 7分

(3)兩兩進(jìn)行一次分鐘的職業(yè)交流的所有結(jié)果為

(甲,乙),(甲,丙),(甲,。,(乙,丙),(乙,。ū,。┕灿個基本事件, 10分

其中異性交流的有個基本事件,故所有概率為. 12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若曲線交于兩點,,的中點為,點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體,,均垂直于平面ABC,,.

(Ⅰ)證明:平面;

(Ⅱ)求直線與平面所成的角的余弦值;

(Ⅲ)求平面與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,,,,且.

I)求證:;

II)求證:

III)若,判斷直線與平面是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的中心在原點,焦點在軸上,離心率,它的一個頂點恰好是拋物線的焦點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過坐標(biāo)原點的直線交橢圓于兩點,在第一象限,軸,垂足為,連接延長交橢圓于點.

①求證:;

②求面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀(jì)念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進(jìn)行支持簽名活動.

公園

獲得簽名人數(shù)

45

60

30

15

然后在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星回答問題,從10個關(guān)于長征的問題中隨機(jī)抽取4個問題讓幸運之星回答,全部答對的幸運之星獲得一份紀(jì)念品.

(Ⅰ)求此活動中各公園幸運之星的人數(shù);

(Ⅱ)若乙公園中每位幸運之星對每個問題答對的概率均為,求恰好2位幸運之星獲得紀(jì)念品的概率;

(Ⅲ)若幸運之星小李對其中8個問題能答對,而另外2個問題答不對,記小李答對的問題數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列四個命題:

,則x,y互為相反數(shù)的逆命題;

全等三角形的面積相等的否命題;

,則有實根的逆否命題;

直角三角形有兩個角是銳角的逆命題;

其中真命題為(

A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 平面, , , 分別為, 的中點.

(1)求證: 平面;

(2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面.已知.

1)證明:平面;

2)證明:

3)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案