已知:a、b是異面直線,a平面a,b平面b,abba

求證:ab

 

 

 

 

 

 

答案:
解析:

證法1:在a上任取點P,

顯然Pb

于是b和點P確定平面g

g a 有公共點P

a gb

b′和a交于P

ba ,

bb

b′∥b

ab

這樣a 內相交直線ab′都平行于b

ab

證法2:設ABa、b的公垂線段,

ABb作平面g ,

g b′,

ABa作平面d ,

ba′.

aaa

bbb

ABaABa′,ABbABb

于是ABa ABb, ab

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、下列命題中,正確命題的序號為
④⑤

①經過空間任意一點都可作唯一一個平面與兩條已知異面直線都平行;
②已知平面α,直線a和直線b,且a∩α=a,b⊥a,則b⊥α;
③有兩個側面都垂直于底面的四棱柱為直四棱柱;
④三棱錐中若有兩組對棱互相垂直,則第三組對棱也一定互相垂直;
⑤三棱錐的四個面可以都是直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知如圖(1),正三角形ABC的邊長為2a,CD是AB邊上的高,E、F分別是AC和BC邊上的點,且滿足
CE
CA
=
CF
CB
=k
,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖(2).
(Ⅰ)試判斷翻折后直線AB與平面DEF的位置關系,并說明理由;
(Ⅱ)求二面角B-AC-D的大。
(Ⅲ)若異面直線AB與DE所成角的余弦值為
2
4
,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

11、下列命題中正確命題的個數(shù)是( 。
①經過空間一點一定可作一平面與兩異面直線都平行;
②已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
③有兩個側面垂直于底面的四棱柱為直四棱柱;
④四個側面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側面都是等腰三角形的三棱錐是正三棱錐;
⑥底面是等邊三角形,∠APB=∠BPC=∠CPA,則三棱錐P-ABC是正三棱錐.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①經過空間一點一定可作一條直線與兩異面直線都垂直;
②經過空間一點一定可作一平面與兩異面直線都平行;
③已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
④四個側面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側面都是等腰三角形的三棱錐是正三棱錐;
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年豐臺區(qū)統(tǒng)一練習一理)(13分)

已知如圖(1),正三角形ABC的邊長為2a,CDAB邊上的高,

E、F分別是ACBC邊上的點,且滿足,現(xiàn)將△ABC

沿CD翻折成直二面角A-DC-B,如圖(2).

(Ⅰ) 試判斷翻折后直線AB與平面DEF的位置關系,并說明理由;

(Ⅱ) 求二面角B-AC-D的大;                                 

(Ⅲ) 若異面直線ABDE所成角的余弦值為,求k的值.

 

查看答案和解析>>

同步練習冊答案