【題目】某學(xué)校有高中學(xué)生500人,其中男生320人,女生180.有人為了獲得該校全體高中學(xué)生的身高信息,采用分層抽樣的方法抽取樣本,并觀測(cè)樣本的指標(biāo)值(單位:cm),計(jì)算得男生樣本的均值為173.5,方差為17,女生樣本的均值為163.83,方差為30.03.

1)根據(jù)以上信息,能夠計(jì)算出總樣本的均值和方差嗎?為什么?

2)如果已知男、女樣本量按比例分配,你能計(jì)算出總樣本的均值和方差各為多少嗎?

3)如果已知男、女的樣本量都是25,你能計(jì)算出總樣本的均值和方差各為多少嗎?它們分別作為總體均值和方差的估計(jì)合適嗎?為什么?

【答案】1)不能,見(jiàn)解析;(2)能,170.0243.24;(3168.67,46.89,不合適,見(jiàn)解析.

【解析】

1)由于不知道如何抽取的樣本,因此沒(méi)法計(jì)算總體均值,同樣沒(méi)法計(jì)算總體方差;

2)按男女生比例抽取樣本,可按相應(yīng)公式計(jì)算均值和方差;

3)已知樣本量,可按樣本量所占比計(jì)算均值與方差,但不具代表性,個(gè)體不是等概率抽取的.

公式:分層抽樣中兩組數(shù)據(jù)的抽樣比例是,則總體均值為,

總體方差

1)不能,因?yàn)楸绢}沒(méi)有給出男、女生的樣本量,或者男、女生樣本量的比例,故無(wú)法計(jì)算出總樣本的均值和方差..

2)總樣本的均值為.

總樣本的方差.

3)總樣本的均值為.

總樣本的方差為.

不能作為總體均值和方差的估計(jì),因?yàn)榉謱映闃又形窗幢壤闃樱傮w中每個(gè)個(gè)體被抽到的可能性不完全相同,因而樣本的代表性差.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某市2015年全年空氣質(zhì)量等級(jí)如表1所示.

1

空氣質(zhì)量等級(jí)(空氣質(zhì)量指數(shù)(AQI))

頻數(shù)

頻率

優(yōu)(

83

22.8%

良(

121

33.2%

輕度污染(

68

18.6%

中度污染(

49

13.4%

重度污染(

30

8.2%

嚴(yán)重污染(

14

3.8%

合計(jì)

365

100%

20165月和6月的空氣質(zhì)量指數(shù)如下:

5 240 80 56 53 92 126 45 87 56 60

191 62 55 58 56 53 89 90 125 124

103 81 89 44 34 53 79 81 62 116

88

6 63 92 110 122 102 116 81 163 158 76

33 102 65 53 38 55 52 76 99 127

120 80 108 33 35 73 82 90 146 95

選擇合適的統(tǒng)計(jì)圖描述數(shù)據(jù),并回答下列問(wèn)題:

1)分析該市20166月的空氣質(zhì)量情況.

2)比較該市20165月和6月的空氣質(zhì)量,哪個(gè)月的空氣質(zhì)量較好?

3)比較該市20166月與該市2015年全年的空氣質(zhì)量,20166月的空氣質(zhì)量是否好于去年?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置.

(1)若,求三棱錐體積的最大值;

(2)若,證明:平面平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車(chē)輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車(chē)輛發(fā)車(chē)間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過(guò)調(diào)查得到如下數(shù)據(jù):

間隔時(shí)間/

10

11

12

13

14

15

等候人數(shù)y/

23

25

26

29

28

31

調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若差值的絕對(duì)值都不超過(guò),則稱(chēng)所求方程是“恰當(dāng)回歸方程”.

(1)從這組數(shù)據(jù)中隨機(jī)選取組數(shù)據(jù)后,求剩下的組數(shù)據(jù)的間隔時(shí)間不相鄰的概率;

(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;

(3)為了使等候的乘客不超過(guò)人,試用(2)中方程估計(jì)間隔時(shí)間最多可以設(shè)置為多少(精確到整數(shù))分鐘.

附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的首項(xiàng),前項(xiàng)和滿(mǎn)足關(guān)系式.

(1)求證:數(shù)列是等比數(shù)列;

(2)設(shè)數(shù)列的公比為,作數(shù)列,使,求數(shù)列的通項(xiàng)公式;

(3)數(shù)列滿(mǎn)足條件(2),求和:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,當(dāng)時(shí),這兩個(gè)函數(shù)圖象的交點(diǎn)個(gè)數(shù)為____個(gè).(參考數(shù)值:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋子中,放有大小相同的5個(gè)小球,其中3個(gè)黑球,2個(gè)白球.如果不放回的依次取出2個(gè)球.回答下列問(wèn)題:

()第一次取出的是黑球的概率;

()第一次取出的是黑球,且第二次取出的是白球的概率;

()在第一次取出的是黑球的條件下,第二次取出的是白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)袋子中有大小和質(zhì)地相同的4個(gè)球,其中有有2個(gè)紅色球(標(biāo)號(hào)為12),2個(gè)綠色球(標(biāo)號(hào)為34),從袋中不放回地依次隨機(jī)摸出2個(gè)球.設(shè)事件=“第一次摸到紅球”,=“第二次摸到紅球”,R=“兩次都摸到紅球”,G=“兩次都摸到綠球”,M=“兩個(gè)球顏色相同”,N=“兩個(gè)球顏色不同”.

1)用集合的形式分別寫(xiě)出試驗(yàn)的樣本空間以及上述各事件;

2)事件R,RG,MN之間各有什么關(guān)系?

3)事件R與事件G的并事件與事件M有什么關(guān)系?事件與事件的交事件與事件R有什么關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,,.

(1)求異面直線所成的角;

(2)若,,,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案