在△ABC中,已知a2+b2=c2+
2
ab
,則C=
45°
45°
分析:利用余弦定理表示出cosC,把已知的等式代入求出cosC的值,由C為三角形的內角,利用特殊角的三角函數(shù)值即可求出C的度數(shù).
解答:解:∵a2+b2=c2+
2
ab

∴根據(jù)余弦定理得:
cosC=
2
2

又C為三角形的內角,
則∠C=45°.
故答案為:45°.
點評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,利用了整體代入的思想,余弦定理很好的建立了三角形的邊角關系,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知A、B、C成等差數(shù)列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知A=45°,a=2,b=
2
,則B等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC邊上的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知A=60°,
AB
AC
=1,則△ABC的面積為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的長;
(2)求sinA的值.

查看答案和解析>>

同步練習冊答案