某人隨機地在如圖所示正三角形及其外接圓區(qū)域內部投針(不包括三角形邊界及圓的邊界),則針扎到陰影區(qū)域(不包括邊界)的概率為(  )
分析:先明確是幾何概型中的面積類型,分別求三角形與圓的面積,然后求比值即可.
解答:解:設落在陰影部分內接正三角形上的概率是P,圓的半徑為R,
∵S=πR2,正三角形的面積SA=3×
1
2
×R2×sin120°=
3
3
4
R2
∴P=
SA
A
=
3
3
4
R2
πR2
=
3
3

故選B.
點評:本題主要考查幾何概型中的面積類型,基本方法是:分別求得構成事件A的區(qū)域面積和試驗的全部結果所構成的區(qū)域面積,兩者求比值,即為概率.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013屆云南省高二下學期期中理科數(shù)學試卷(解析版) 題型:填空題

某人隨機地在如圖所示正三角形及其外接圓內部區(qū)域投針(不包括三角形邊界及其外接圓邊界),則針扎到陰影區(qū)域(不包括邊界)的概率為          

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣西柳州市鐵路一中學高一(下)第一次月考數(shù)學試卷(解析版) 題型:選擇題

某人隨機地在如圖所示正三角形及其外接圓區(qū)域內部投針(不包括三角形邊界及圓的邊界),則針扎到陰影區(qū)域(不包括邊界)的概率為( )

A.
B.
C.
D.以上全錯

查看答案和解析>>

同步練習冊答案