如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn).
(I) 證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

【答案】分析:(Ⅰ)由題意易證DC1⊥平面BDC,再由面面垂直的判定定理即可證得平面BDC1⊥平面BDC;
(Ⅱ)設(shè)棱錐B-DACC1的體積為V1,AC=1,易求V1=××1×1=,三棱柱ABC-A1B1C1的體積V=1,于是可得(V-V1):V1=1:1,從而可得答案.
解答:證明:(1)由題設(shè)知BC⊥CC1,BC⊥AC,CC1∩AC=C,
∴BC⊥平面ACC1A1,又DC1?平面ACC1A1,
∴DC1⊥BC.
由題設(shè)知∠A1DC1=∠ADC=45°,
∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,
∴DC1⊥平面BDC,又DC1?平面BDC1,
∴平面BDC1⊥平面BDC;
(2)設(shè)棱錐B-DACC1的體積為V1,AC=1,由題意得V1=××1×1=,
又三棱柱ABC-A1B1C1的體積V=1,
∴(V-V1):V1=1:1,
∴平面BDC1分此棱柱兩部分體積的比為1:1.
點(diǎn)評:本題考查平面與平面垂直的判定,著重考查線面垂直的判定定理的應(yīng)用與棱柱、棱錐的體積,考查分析,表達(dá)與運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,則直線A1C1和平面ACB1的距離等于
 
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),AB=AC.
(1)證明:DE⊥平面BCC1
(2)設(shè)B1C與平面BCD所成的角的大小為30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中點(diǎn).
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的底面ABC為正三角形,側(cè)棱AA1⊥平面ABC,D是BC中點(diǎn),且AA1=AB
(1)證明:AD⊥BC1
(2)證明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大連二模)如圖,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC為底邊的等腰三角形,平面ABC⊥平面BCC′B′,E、F分別為棱AB、CC′的中點(diǎn).
(I)求證:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF與平面ACC'A'所成的角的余弦為
7
3
,求二面角C-AA'-B的大。

查看答案和解析>>

同步練習(xí)冊答案