【題目】如圖,在四棱錐中,平面,, ,,為的中點.
(1)求異面直線,所成角的余弦值;
(2)點在線段上,且,若直線與平面所成角的正弦值為,求的值.
【答案】(1)(2).
【解析】
試題分析:(1)利用空間向量求線線角,先根據(jù)題意確定空間直角坐標系,設(shè)立各點坐標,表示直線方向向量,利用向量數(shù)量積求向量夾角余弦值,最后根據(jù)線線角與向量夾角關(guān)系得線線角余弦值(2)利用空間向量求線面角,先根據(jù)題意確定空間直角坐標系,設(shè)立各點坐標,根據(jù)方程組求面的法向量,利用向量數(shù)量積求向量夾角余弦值,最后根據(jù)線面角與向量夾角互余關(guān)系列等量關(guān)系,解出的值.
試題解析:(1)
因為平面,且平面,
所以,,
又因為,所以兩兩互相垂直.
分別以為軸建立空間直角坐標系,
則由,可得
,,,,,
又因為為的中點,所以.
所以,,…………2分
所以
,
所以異面直線,所成角的余弦值為.…………………………5分
(2)因為,所以,則,
,,
設(shè)平面的法向量為,
則 即 令,解得,,
所以是平面的一個法向量.……………………………7分
因為直線與平面所成角的正弦值為,
所以,
解得,
所以的值為.……………………………………………………………10分
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,以原點為圓心,橢圓的長半軸為半徑的圓與直線相切.
(1)求橢圓的標準方程;
(2)已知點,為動直線與橢圓的兩個交點,問:在軸上是否存在點,使為定值?若存在,試求出點的坐標和定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為常數(shù),函數(shù).
(1)當時,求函數(shù)的最小值;
(2)若有兩個極值點,():
①求實數(shù)的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率為,點為坐標原點,若橢圓與曲線的交點分別為(下上),且兩點滿足.
(1)求橢圓的標準方程;
(2)過橢圓上異于其頂點的任一點,作的兩條切線,切點分別為,且直線在軸、軸上的截距分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為為上異于原點的任意一點,過點的直線交于另一點,交軸的正半軸于點,且有.當點橫坐標為時,為正三角形.
(1)求的方程;
(2)若直線,且和 有且只有一個公共點.
①證明直線過定點,并求出定點坐標;
②的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知圓及點,.
(1)若直線平行于,與圓相交于,兩點,,求直線的方程;
(2)在圓上是否存在點,使得?若存在,求點的個數(shù);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品和產(chǎn)品需要甲、乙兩種新型材料,生產(chǎn)一件產(chǎn)品需要甲材料1.5,乙材料1,用5個工時,生產(chǎn)一件產(chǎn)品需要甲材料0.5,乙材料0.3,用3個工時,生產(chǎn)一件產(chǎn)品的利潤為2100元,生產(chǎn)一件產(chǎn)品的利潤為900元.該企業(yè)現(xiàn)有甲材料150,乙材料90,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品的利潤之和的最大值為____________元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的圓臺中,是下底面圓的直徑,是上底面圓的直徑,是圓臺的一條母線.
(1)已知,分別為,的中點,求證:平面;
(2)已知,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:當時,關(guān)于的不等式恒成立;
(3)若正實數(shù)滿足,證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com