已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)作斜率為的直線交曲線于、兩點(diǎn),且,又點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),試問、、、四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說明理由.
(1);(2)詳見解析.
解析試題分析:(1)設(shè)出圓的方程,利用圓心到直線的距離等于半徑,求出,利用離心率及,求出,即可求出橢圓的標(biāo)準(zhǔn)方程;
(2)求出直線的方程,聯(lián)立直線方程與橢圓方程,設(shè),利用
,求出坐標(biāo),又點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn)求出的坐標(biāo),推出線段的中垂線方程和,然后求出和的交點(diǎn)為,推出四點(diǎn)共圓.
試題解析:(1)由題意可得圓的方程為,
∵直線與圓相切,∴,即, 2分
又,及,得,所以橢圓方程為. 4分
(2)因直線過點(diǎn),且斜率為,故有
聯(lián)立方程組,消去,得 6分
設(shè)、,可得,于是.
又,得即 8分
而點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,于是,可得點(diǎn)
若線段、的中垂線分別為和,,則有
聯(lián)立方程組,解得和的交點(diǎn)為 10分
因此,可算得
所以、、、四點(diǎn)共圓,且圓心坐標(biāo)為半徑為 12分
考點(diǎn):直線與圓錐曲線的綜合性問題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩個(gè)焦點(diǎn)分別為和,離心率.
(1)求橢圓的方程;
(2)設(shè)直線()與橢圓交于、兩點(diǎn),線段 的垂直平分線交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知平面內(nèi)一動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、的距離之和為,線段的長為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線與軌跡交于、兩點(diǎn),且點(diǎn)在線段的上方,
線段的垂直平分線為.
①求的面積的最大值;
②軌跡上是否存在除、外的兩點(diǎn)、關(guān)于直線對(duì)稱,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)在雙曲線上,且雙曲線的一條漸近線的方程是.
(1)求雙曲線的方程;
(2)若過點(diǎn)且斜率為的直線與雙曲線有兩個(gè)不同交點(diǎn),求實(shí)數(shù)的取值范圍;
(3)設(shè)(2)中直線與雙曲線交于兩個(gè)不同點(diǎn),若以線段為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率,長軸的左右端點(diǎn)分別為,.
(1)求橢圓的方程;
(2)設(shè)動(dòng)直線與曲線有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).問在軸上是否存在定點(diǎn),使得以為直徑的圓恒過定點(diǎn),若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知A、B、C是長軸長為4的橢圓E上的三點(diǎn),點(diǎn)A是長軸的一個(gè)端點(diǎn),BC過橢圓中心O,且,|BC|=2|AC|.
(1)求橢圓E的方程;
(2)在橢圓E上是否存點(diǎn)Q,使得?若存在,有幾個(gè)(不必求出Q點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說明理由.
(3)過橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作的兩條切線,切點(diǎn)分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)、、均在拋物線上.
(1)寫出該拋物線的方程及其準(zhǔn)線方程;
(2)當(dāng)與的斜率存在且傾斜角互補(bǔ)時(shí),求的值及直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓C0:=1(a>b>0,a、b為常數(shù)),動(dòng)圓C1:x2+y2=,b<t1<a.點(diǎn)A1、A2分別為C0的左、右頂點(diǎn),C1與C0相交于A、B、C、D四點(diǎn).
(1)求直線AA1與直線A2B交點(diǎn)M的軌跡方程;
(2)設(shè)動(dòng)圓C2:x2+y2=與C0相交于A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com