【題目】在空間中, 是兩條不同的直線, 是兩個不同的平面,則下列命題中的真命題是( )
A.若 ,則
B.若 , , ,則
C.若 , ,則
D.若 ,

【答案】D
【解析】 中,若 , ,則 ,則 平行,相交或者異面,故不符合題意;
中,若 , , ,則 平行,相交或者異面,故不符合題意;
中,若 , ,則 平面 內,故不符合題意;
中,若 , ,則由線面平行的判定定理得 ,故符合題意;
所以答案是:
【考點精析】本題主要考查了空間中直線與平面之間的位置關系的相關知識點,需要掌握直線在平面內—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=3ax2+bx-5a+b是偶函數(shù),且其定義域為[6a-1,a],則a+b=( )
A.
B.-1
C.1
D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)y=f(x)的導函數(shù)的圖象如圖所示,給出下列判斷:

①函數(shù)y=f(x)在區(qū)間 內單調遞增;
②函數(shù)y=f(x)在區(qū)間 內單調遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內單調遞增;
④當x=2時,函數(shù)y=f(x)有極小值;
⑤當x= 時,函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A.①②
B.②③
C.③④⑤
D.③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式4ax-1<3x-4(a>0,且a≠1)對于任意的x>2恒成立,則a的取值范圍為( )
A.
B.
C.[2,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市初三畢業(yè)生參加中考要進行體育測試,某實驗中學初三(8)班的一次體育測試成績的莖葉圖和頻率分布直方圖都受到不同程度的涂黑,但可見部分如圖,據(jù)此解答如下問題.

(Ⅰ)求全班人數(shù)及中位數(shù),并重新畫出頻率直方圖;
(Ⅱ)若要從分數(shù)在 之間的成績中任取兩個學生成績分析學生得分情況,在抽取的學生中,求至少有一個分數(shù)在 之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 處的切線斜率為2.
(Ⅰ)求 的單調區(qū)間和極值;
(Ⅱ)若 上無解,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)若曲線 處的切線經(jīng)過坐標原點,求 及該切線的方程;
(2)設 ,若函數(shù) 的值域為 ,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 為常數(shù))與 軸有唯一的公關點
(Ⅰ)求函數(shù) 的單調區(qū)間;
(Ⅱ)曲線 在點 處的切線斜率為 ,若存在不相等的正實數(shù) ,滿足 ,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(某保險公司有一款保險產(chǎn)品的歷史戶獲益率(獲益率=獲益÷保費收入)的頻率分布直方圖如圖所示:

(Ⅰ)試估計平均收益率;
(Ⅱ)根據(jù)經(jīng)驗若每份保單的保費在 元的基礎上每增加 元,對應的銷量 (萬份)與 (元)有較強線性相關關系,從歷史銷售記錄中抽樣得到如下 的對應數(shù)據(jù):

(元)

銷量 (萬份)

(。└鶕(jù)數(shù)據(jù)計算出銷量 (萬份)與 (元)的回歸方程為 ;
(ⅱ)若把回歸方程 當作 的線性關系,用(Ⅰ)中求出的平均獲益率估計此產(chǎn)品的獲益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大獲益,并求出該最大獲益.
參考公示:

查看答案和解析>>

同步練習冊答案