【題目】某種工業(yè)機器生產(chǎn)商,對一次性購買2臺機器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:
方案一:交納延保金700元,在延保的兩年內(nèi)可免費維修2次,超過2次每次收取維修費200元;
方案二:交納延保金1000元,在延保的兩年內(nèi)可免費維修4次,超過4次每次收取維修費100元.
某工廠準備一次性購買2臺這種機器.現(xiàn)需決策在購買機器時應購買哪種延保方案,為此搜集并整理了50臺這種機器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺數(shù) | 5 | 20 | 10 | 15 |
以這50臺機器維修次數(shù)的頻率代替1臺機器維修次數(shù)發(fā)生的概率.記X表示這2臺機器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù).
(1)求X的分布列;
(2)以所需延保金及維修費用的期望值為決策依據(jù),工廠選擇哪種延保方案更合算?
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖像與軸的相鄰兩交點的坐標分別為,,且當時,有最小值.
(1)求函數(shù)的解析式及單調(diào)遞減區(qū)間;
(2)將的圖像向右平移個單位,再將所得圖像的橫坐標伸長為原來的倍(縱坐標不變),得到函數(shù)的圖像,若關于的方程在區(qū)間上有兩個解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的有( )
①常數(shù)數(shù)列既是等差數(shù)列也是等比數(shù)列;②在中,若,則為直角三角形;③若為銳角三角形的兩個內(nèi)角,則;④若為數(shù)列的前項和,則此數(shù)列的通項.
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1an=0(n∈N*),且,,成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(n∈N*),求數(shù)列{bn}的前n項和為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為圓上的動點,點在軸上的投影為,點為線段AB的中點,設點的軌跡為.
(1)求點的軌跡的方程;
(2)已知直線與交于兩點,,若直線的斜率之和為3,直線是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,是橢圓的左、右焦點,橢圓過點.
(1)求橢圓的方程;
(2)過點的直線(不過坐標原點)與橢圓交于,兩點,且點在軸上方,點在軸下方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點,G是EF的中點,現(xiàn)在沿AE、AF及EF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( )
A. 所在平面B. 所在平面
C. 所在平面D. 所在平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com