11.     若直線與圓交于兩點,且,其中O為原點,則實數(shù)的值為

       A.2  B.-2      C.2或-2       D.

C 由知,∠,∴圓心到直線距離為,∴的值為2或-2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x-3)2+(y-4)2=16,直線l1:kx-y-k=0.
(1)若l1與圓交于兩個不同點P,Q,求實數(shù)k的取值范圍;
(2)若PQ的中點為M,A(1,0),且l1與l2:x+2y+4=0的交點為N,求證:|AM|•|AN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(13分)已知橢圓C的兩個焦點分別為,且點在橢圓C上,又.

   (1)求焦點F2的軌跡的方程;

   (2)若直線與曲線交于M、N兩點,以MN為直徑的圓經(jīng)過原點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年寧夏銀川一中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓(x-3)2+(y-4)2=16,直線l1:kx-y-k=0.
(1)若l1與圓交于兩個不同點P,Q,求實數(shù)k的取值范圍;
(2)若PQ的中點為M,A(1,0),且l1與l2:x+2y+4=0的交點為N,求證:|AM|•|AN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河南安陽一中高二第二次階段考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)如圖,已知橢圓(a>b>0)的離心率,過點 和的直線與原點的距離為

(1)求橢圓的方程;

(2)已知定點,若直線與橢圓交于、兩    點.問:是否存在的值,

使以為直徑的圓過點?請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省五校協(xié)作體高三上學(xué)期期初聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

設(shè)橢圓的左、右焦點分別為,上頂點為,過點垂直的直線交軸負(fù)半軸于點,且

(1)求橢圓的離心率;

(2)若過、、三點的圓恰好與直線相切,求橢圓

方程;

(3)在(2)的條件下,過右焦點作斜率為的直線與橢圓交于、

點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,

如果存在,求出的取值范圍,如果不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案