【題目】已知aR,函數(shù)fx)=x22ax+5.

1)若a>1,且函數(shù)fx)的定義域和值域均為[1,a],求實數(shù)a的值;

2)若不等式x|fx)﹣x2|1x∈[,]恒成立,求實數(shù)a的取值范圍.

【答案】12;(2.

【解析】

1)根據(jù)fx)的圖象開口向上,對稱軸為x=a>1,知fx)在[1a]上單調(diào)遞減,所以f1=a求解即可.

2)將不等式x|fx)﹣x2|1x[]恒成立,去絕對值轉(zhuǎn)化為aax[,]恒成立,分別令gx,x[,],用二次函數(shù)求其最大值,令hx,x[],求其最小值即可.

1)∵fx)的圖象開口向上,對稱軸為x=a>1

fx)在[1,a]上單調(diào)遞減,

f1=a,即62aa,解得a=2..

2)不等式x|fx)﹣x2|1x[,]恒成立,

x|2ax5|1x[,]恒成立,

aax[,]恒成立,

gx,x[,]

所以gxmax=g,

所以.

hxx[,],

所以hxmin=h=7

所以.

綜上:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若曲線在點處有相同的切線,求函數(shù)的極值;

2)若,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (其中e是自然對數(shù)的底數(shù),kR)

(1)討論函數(shù)的單調(diào)性;

(2)當函數(shù)有兩個零點時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方形中,,分別為棱和棱的中點,則下列說法正確的是( )

A.∥平面B.平面截正方體所得截面為等腰梯形

C.平面D.異面直線所成的角為60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】推進垃圾分類處理,是落實綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅戰(zhàn)的重要環(huán)節(jié).為了解居民對垃圾分類的了解程度某社區(qū)居委會隨機抽取1000名社區(qū)居民參與問卷測試,并將問卷得分繪制頻率分布表如表:

得分

[30,40

[40,50

[50,60

[60,70

[7080

[80,90

[90,100]

男性人數(shù)

40

90

120

130

110

60

30

女性人數(shù)

20

50

80

110

100

40

20

1)從該社區(qū)隨機抽取一名居民參與問卷測試試估計其得分不低于60分的概率:

2)將居民對垃圾分類的了解程度分為“比較了解”(得分不低于60分)和“不太了解”(得分低于60)兩類,完成2×2列聯(lián)表,并判斷是否有95%的把握認為“居民對垃圾分類的了解程度”與“性別”有關?

不太了解

比較了解

合計

男性

女性

合計

3)從參與問卷測試且得分不低于80分的居民中,按照性別進行分層抽樣,共抽取10人,現(xiàn)從這10人中隨機抽取3人作為環(huán)保宣傳隊長,設3人中男性隊長的人數(shù)為,求的分布列和期望.

附:

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列是合情推理的是(

①由正三角形的性質(zhì)類比出正三棱錐的有關性質(zhì);

②由正方形矩形的內(nèi)角和是,歸納出所有四邊形的內(nèi)角和都是;

③三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得出凸邊形內(nèi)角和是;

④小李某次數(shù)學考試成績是90分,由此推出小李的全班同學這次數(shù)學考試的成績都是90分.

A.①②B.①②③C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體ABCDE中,已知ABCD是邊長為2的正方形,平面ABCD⊥平面ABE,∠AEB=90°,AE=BE.

(1)若M是DE的中點,試在AC上找一點N,使得MN∥平面ABE,并給出證明;

(2)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 為自然對數(shù)的底數(shù))

(1)討論函數(shù)的單調(diào)性;

(2)當時,上為減函數(shù),求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形周長為

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與橢圓交于,兩點,且以為直徑的圓過橢圓的右頂點,求面積的最大值.

查看答案和解析>>

同步練習冊答案